Cross-Country Income Differences Revisited: Accounting for the Role of Intangible Capital

SPINTAN Mid-Term Conference, NIESR, London, The U.K.

Wen Chen

University of Groningen, The Netherlands

April 23, 2015

NIESR, London

SPINTAN Mid-Term Conference

 ▲ ■ → ▲ ■
 ■

 April 23, 2015

1 / 29

MOTIVATION

Existing literature:

- Tremendous progress in understanding and measuring intangibles (CHS, 2005)
- Country-specific growth accounting studies (e.g. CHS, 2009; Fukao et.al, 2009)
- Econometric analysis on intangibles and labor productivity (Roth and Thum, 2013)

Yet missing:

• Incorporating intangibles into the development accounting framework (intangibles data for a larger sample of countries needed)

- 4 周 ト 4 日 ト 4 日 ト

LITERATURE

1. The rapidly growing literature on intangibles

• contribution by providing intangible investment estimates for a wider range of countries

2. The vast and still expanding literature on international income differences

• contribution by explicitly accounting for intangible investment

COVERAGE: COUNTRIES

• 60 economies (sum of GDP over 90% of the world total, covering countries at all stages of development), 1995-2011

NIESR, London

SPINTAN Mid-Term Conference

April 23, 2015

4 / 29

COVERAGE: ASSETS

- Organizational capital
- Brand equity
- Software

• R&D

Uncovered 29% Brand Equity 20% Software 13%

Data source: INTAN-Invest

NIESR, London

April 23, 2015

5 / 29

WHY: 60 Countries & 1995

Asset type	year	# years	# countries	Data source
R&D	96'-11'	16	156	UNESCO Institute for Statistics & OECD
OC	95'-11'	17	101	ILO, BLS (OES), PWT 8.1
Software	03'-11'	9	75	WITSA
Brand Equity	95'-11'	17	65	WARC (84) & ESOMAR (80)

95'-11': (1-0.2)¹⁷=0.02

NIESR, London

SPINTAN Mid-Term Conference

April 23, 2015

- 25

6 / 29

イロト イヨト イヨト イヨト

COVERAGE: SECTORS

Exclude public sectors (NACE Rev.1):

- Public Adminstration (L)
- Education (M)
- Heal and Social Work (N)

That means:

$$y' = \frac{(s_Y \cdot Y + N)}{s_L \cdot EMP}$$

$$k' = \frac{s_K \cdot K}{s_L \cdot EMP}$$

NIESR, London

April 23, 2015

э

7 / 29

Measuring BERD: N^{RD}

- Primary data source: Data Center of UNESCO Institute for Statistics (i.e. GERD performed by Business Enterprises)
- $\bullet~27\%$ data on BERD missing from UNESCO
- Whenever possible, extrapolate the missing values using the growth of the actual BERD numbers from external data source (e.g. OECD, Eurostat, Statistical office)
- Linear interpolation based on logged variables (assuming constant growth rates)
- 16% missing (extrapolate based on the average growth rate of R&D investment share of GDP observed in the last (first) five years)

- 4 周 ト 4 日 ト 4 日 ト

Measuring Organizational Capital: N^{OC}

20% of manager's wage considered as investment in OC

- Number of managers employed (ISCO-88), per country, from ILO (ILOSTAT & LABORSTA databases): EMP_c^M
- Wage rate of the managers per country: $WAGE_c^M$

$$\mathbf{N}_{c,t}^{OC} = (20\% \cdot \mathbf{WAGE}_{c,t}^{M}) \times \mathbf{EMP}_{c,t}^{M}$$

Measuring Organizational Capital: N^{OC}

Impute the manager's wage rate in two steps:

1. The wage rate of an average worker (using PWT8.1)

$$W_{c,t}^{average} = \left(\frac{labshare \times cgdpo \times pl_gdpo}{emp}\right)_{c,t} \times xr_{c,t}$$

2. The relative wage of managers for the US

$$R_t^{US} = \left(W_{BLS}^{Managers} / W_{PWT}^{average} \right)_t^{US}$$

where $W_{BLS}^{Managers}$ is derived from BLS/OES

Measuring Organizational Capital: N^{OC}

Relative wage constant across countries:

$$W_{c,t}^{Managers} = R_t^{US} \times W_{c,t}^{average}$$

This assumption is subject to scrutiny for robustness check

• Allow for R to differ by country (based on the limited earnings data from ILO)

Measuring Brand Equity: N^{BE}

Following the approach of Corrado and Hao (2014)

- ADV: WARC (World Advertising Research Center)
- MKT: ESOMAR (European Society for Opinion and Marketing Research)

Investment in advertising Investment in market research

where $\gamma_{adv} = 1.39$ and $\gamma_{mkt} = 2$, adjustment factors

12 / 29

(4月) (3日) (3日)

Measuring software: N^{SW}

- Data source: WITSA (Digital Reports for computer software spending)
- Only available for 2003-2011
- Missing data extrapolated based on the average growth rate of software investment as share of GDP observed in the first five years (i.e. 2003-2007)

TOTAL INTANGIBLE INVESTMENT: N

• N= $N^{RD} + N^{OC} + N^{BE} + N^{SW}$

Total Intangible Investment Compared with INTAN-Invest

GDP per capita in 2011 PPP\$ (Mean 95'-10')

April 23, 2015

3) 3

TOTAL INTANGIBLE INVESTMENT: N

- $Y' = s^M GDP + N^{RD} + N^{OC} + N^{BE}$; (54 SNA 1993; 6 SNA 2008)
- SNA (2008): AUS, CAN, HKG, MEX, SGP, USA

GDP numbers obtained from WDI are cross-checked with IMF WEOD (where GDP is solely based on SNA 1993): $GDP^{WDI} = GDP^{IMF}$

DATA FEATURE 1

Intangible investment positively associated with per capita income:

April 23, 2015

DATA FEATURE 2

NIESR, London

April 23, 2015

э

17 / 29

æ

BASIC SETUP OF DEVELOPMENT ACCOUNTING

• Benchmark production function (Hall and Jones, 1999):

$$Y = A \cdot K^{\alpha} \, (Lh)^{\gamma}$$

• per worker & CTRS:

$$y = A \cdot k^{\alpha} \left(h \right)^{1-\alpha}$$

• Rewrite as follows:

$$y = A \cdot y_{KH}; \qquad y_{KH} \equiv k^{\alpha} h^{1-\alpha}$$

NIESR, London

SPINTAN Mid-Term Conference

April 23, 2015

18 / 29

BASIC SETUP OF DEVELOPMENT ACCOUNTING

• Variance decomposition $(y = A \cdot y_{KH})$:

 $var[log(y)] = var[log(A)] + var[log(y_{KH})] + 2cov[log(A), log(y_{KH})]$

• If A is constant (in theory):

$$var[log(y)] = var[log(y_{KH})]$$

• In practice:

$$VAF = \frac{var[log(y_{KH})]}{var[log(y)]}$$

Extended Model

• Adding intangible capital:

$$Y' = A \cdot K^{\alpha} R^{\beta} \left(Lh \right)^{1-\alpha-\beta}$$

$$y\prime = A \cdot k^{\alpha} r^{\beta} \left(h\right)^{1-\alpha-\beta}$$

• Rewrite as follows:

$$y' \equiv A \cdot y_{KRH}$$

• Using variance decomposition and assuming \bar{A} :

$$VAF' = \frac{var[log(y_{KRH})]}{var[log(y')]}$$

NIESR, London

3 × 4 3 ×

-

DATA DESCRIPTION: BASIC MODEL

VAF	VAF'			
$k^{\alpha} h^{1-\alpha} / y$	$k^{\alpha}r^{\beta}h^{1-lpha-eta}$	/ y'		

• $y_{c,t}$: $(Y_{c,t}/p_t^{2011}/ppp_c^{2011})/emp_{c,t}$

- ▶ Y: Nominal GDP in LCU (WDI);
- ▶ p: GDP price deflator constant at 2011 price (WDI)
- 2011 PPP exchange rate (WDI)
- Number of persons engaged (PWT8.1)

• $k: K_{c,t}/emp_{c,t}$

- $K_{c,t} = (1 \delta^K) \cdot K_{c,t-1} + \frac{I_{c,t}}{p_{c,t}};$
- I = GFCF (WDI)
- $\blacktriangleright \quad \delta^K = 0.06$
- 1960-2011 (52 years)
- $h_{c,t}$: standard procedure as function of the average years of schooling s
- α : 1/3 (Caselli, 2005)

イロト イポト イヨト イヨト

3

RESULTS: BASIC MODEL

VAF	VAF'			
$k^{\alpha} h^{1-\alpha} / y$	$k^{\alpha} r^{\beta} h^{1 \cdot \alpha \cdot \beta}$	/ y'		

Table 3: VARIANCE ACCOUNTED FOR: BASIC MODEL

Specification	Coverage (N)	$\mathbf{var}[\mathbf{log}(\mathbf{y})]$	$\mathbf{var}[\mathbf{log}(\mathbf{y_{KH}})]$	VAF
Own data	Total Economy (60)	0.397	0.099	24.9%
Drop if $I_0 > 1970$	Total Economy (51)	0.443	0.111	25.0%
PWT 8.1	Total Economy (60)	0.453	0.111	24.5%
Own data	Market Economy (60)	0.443	0.111	25.0%

Note: Market economy indicates that the analysis is based on market- GDP, -investment, -employment.

-

æ

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DATA DESCRIPTION: EXTENDED MODEL

VAF	VAF'			
$k^{\alpha}h^{1-\alpha}/y$	$k^{\alpha}r^{\beta}h^{1-\alpha-\beta}$ / y'			

- $y'_{c,t}$: $(Y'_{c,t}/p_t^{2011}/ppp_c^{2011})/emp'_{c,t}$; where $Y'_{c,t} = Y_{c,t} + \sum_{j=1}^3 N_{j,c,t}$ • $k'_{c,t}$: $K'_{c,t}/emp'_{c,t}$;
- $r_{c,t}$: $R_{c,t}/emp'_{c,t}$
 - $R_{c,t} = (1 \delta_j^R) \cdot R_{c,t-1} + \frac{N_{c,t}}{P_{c,t}};$
 - N: Own data (developed in the study)
 - $\delta^{be} = 0.6; \, \delta^{oc} = 0.4; \, \delta^{rd} = 0.2; \, (CHS, \, 2009)$
 - 1995-2011 (17 years)
- *h*: same as before
- $\alpha \prime = 0.25 \ [0.25 0.3]; \ \beta = 0.15 \ [0.15 0.25]; \ \gamma \prime = 0.6 \ [0.6 0.45]$

Results: Extended Model

VAF	VAF'
$k^{\alpha}h^{1-\alpha}/y$	$k^{\alpha}r^{\beta}h^{1-\alpha-\beta}$ / y'

Table 5: VARIANCE ACCOUNTED FOR: AUGMENTED MODEL (MARKET ECONOMY)

	Factor shares	$\mathbf{var}[\mathbf{log}(\mathbf{y\prime})]$	$\mathbf{var}[\mathbf{log}(\mathbf{y_{KRH}})]$	$\mathbf{V\!A}\mathbf{F}'$	Δ
Lower-bound	$\alpha = .27 \ \& \ \beta = .1$	0.456	0.160	35.1%	+10%
Benchmark	$\alpha = .25 \ \& \ \beta = .15$	0.456	0.195	42.8%	+18%
Alternative OC measure (R_c)	$\alpha = .25 \ \& \ \beta = .15$	0.455	0.191	42.0%	+17%
Dropping ESP & GRC	$\alpha = .25 \ \& \ \beta = .15$	0.468	0.200	42.7%	+18%
Upper-bound	$\alpha = .275 \ \& \ \beta = .2$	0.456	0.261	57.2%	+32%

イロト イヨト イヨト イヨト

э.

Conclusions & Discussions

• Intangible investment becomes increasingly important over time

• In all variants of the model considered, differences in intangible capital can account for 10% to 32% of the observed income differences, significantly diminishing the role of TFP

• The explanatory potential of intangibles could be greater, given that only a subset of intangibles are captured in the current study

Thank you for your attention!

NIESR, London

3 N -April 23, 2015

Image: A matrix

4 E b

ъ

HUMAN CAPITAL

 $\mathbf{h}{=}\mathbf{e}^{\phi(s)}$

•
$$\phi(s) = 0.134 \cdot s$$
 if $s \le 4$

•
$$\phi(s) = 0.134 \cdot 4 + 0.101 \cdot (s - 4)$$
 if $4 < s \le 8$

•
$$\phi(s) = 0.134 \cdot 4 + 0.101 \cdot 4 + 0.068 \cdot (s-8)$$
 if $s > 8$

Back

Ξ.

26 / 29

<ロト <回ト < 回ト < 回ト

RELATIVE WAGE OF MANAGERS (USA)

Back

æ

Relative Wage of Managers (ILO)

Back

NIESR, London

SPINTAN Mid-Term Conference

April 23, 2015

Back

April 23, 2015

э

ъ