Smart Public Intangibles:
SPINTAN Framework and Measurement Guidelines

Carol Corrado, Jonathan Haskel, and Cecilia Jona-Lasinio

November 11, 2014
Initial draft: August 27, 2014

Abstract

The paper sets out a measurement framework for the analysis and generation of data on public intangible investments. We do this in a manner that is, broadly speaking, within the current scope of GDP and makes possible the generation of new empirics on the evolution of productivity and living standards, as well as the analysis of policies supporting economic growth through public intangible investments.

We find the desiratum is to construct a database that (a) imputes a net return to government capital, (b) disaggregates industries of interest by institutional sector, (c) includes data on external funding of R&D performed by private enterprises, (d) uses industry capital compensation measured to include all public payments, and (e) contains a crosswalk for each component of government expenditure for each function of government to an industry of interest.

*The Conference Board.
†Imperial College.
‡ISTAT and LUISS.
§Smart Public INTANgibles is an EU FP-7 project under grant agreement No. 612774.
Contents

1 Scope, Goals, and Challenges 2

2 Asset Boundary 10
 2.1 CHS-type Assets .. 10
 2.2 Social Infrastructure .. 13

3 Framework for Analysis 16
 3.1 Sources and Uses of Economic Growth 16
 3.2 Schooling-Produced Knowledge Assets 18
 3.3 Return to Nonmarket Capital 22

4 Government in GDP, National Income, and Industry Output 24
 4.1 Components of Government Expenditure 24
 4.2 GDP and Income Impacts of New Assets 31
 4.3 R&D Gross Output and Performer vs. Funder 36

5 Conclusion 37

List of Figures

1 SPINTAN Topics of Interest and Types of Capital 2
2 Enterprise Types in the SNA 5
3 Government Expenditure, EU-27 and Selected Countries, 2012 . 8
4 Government Investment in the EU and US, 2002–2012 9
5 UNESCO Framework for Statistics on Cultural Domains 12
6 Links from Policies to Capital, GDP per capita, and Societal Well-being 15

List of Tables

1 SPINTAN Industries of Interest 4
2 Functions of Government .. 6
3 Knowledge Capital in a Total Economy 11
A1 NACE 2 Intermediate Structure 44
A2 Classification of the Purposes of NPI 45
A3 MEPSIR Information Types and Sub-types 46
A4 SPINTAN Data Desideratum 47
Analysis of an economy’s performance requires data on public investment and estimates of how these investments impact private sector outcomes. The SPINTAN project aims at discovering the theoretical and empirical underpinnings of public intangible investments and public policies towards those investments. It widens work carried out in previous FP7 projects by including the nonmarket sector in the Corrado, Hulten, and Sichel (2005, 2009, hereafter CHS) framework for analyzing the contribution of intangible capital to economic growth. The CHS framework was developed for application to the market (or business) sector, and thus considerations that arise in a public context require extension and modification.

The primary purpose of this paper is to review and analyse key issues with regard to the boundaries of public intangibles and to offer a general accounting framework that facilitates the estimation and analysis of public sector activity consistently across countries. Our goal is to be able to construct satellite accounts that capture public investments in intangibles at the level and detail needed for economic analysis of a wide set of public policies. Insofar as possible, we do this using a national accounts approach and national accounts data. In this regard, the imminent forthcoming capitalization of R&D in the national accounts of European countries presents an opportunity for discussion and illumination of many of the principles involved.

This paper has four major sections. In the first, we review the scope, goal, and other preliminaries, including terminology. In the second, we set out two broad categories of assets we propose to measure (1) information, scientific, and cultural assets and (2) societal competencies. We also include a list of components for each major category. Then we lay out our basic approach for analyzing public investments and public capital, from which the measurement needs are obtained. We present an accounting treatment of education services as changes in societal capital, discuss the importance of the mixed and special nature of certain government functions (health, education, cultural activities), note how a rate of return that must be assigned to capture services flows from public capital, and present adjustments to national accounts when new public assets are recognized. A final section concludes and summarizes.

1COINVEST, EUKLEMS, INDICSER, and INNODRIVE.
1 Scope, Goals, and Challenges

Before we review theoretical elements, it must be said that SPINTAN’s conceptual framework for the measurement of public intangibles is formulated with the analysis of certain topics in mind. These topics are: health and education, culture and the arts, science and the economy, and information and the economy (i.e., not the environment, not mass transport, etc.). Even so, because the impact of public investment in a particular asset type, scientific R&D, say, depends on other public investments (e.g., education), other types of private investment (physical, human, and intangible), as well as framework conditions (e.g., intellectual property policies), the subject matter we are dealing with is wide-ranging.

The overlaps and synergies among capital types and topics are illustrated in a general fashion in figure 1 for ready reference. The key point to keep in mind is that considering impacts of investment in the arts vs. health vs. education vs. science vs. information deals with very different types and very different aspects of capital. Understanding synergies across capital asset types and links to spending policies, i.e., where what we call a public investment can be tied to a line item in the budget of a government or quasi-public institution, is an important consideration in SPINTAN’s planned analysis of public intangibles. This implies that we need to aim for sufficient detail in our measures to generate meaningful results on our topics. At the same time we need to be sufficiently general so that all topics can be analyzed using the same framework.
Measurement Goal. What is the nature and scope of the measures we aim to develop? As we proceed to expand the existing intangibles framework, broadly speaking we continue to treat the current scope of GDP as our production possibilities frontier. In other words, while we consider nonmarket production by public and nonprofit institutions, nonmarket production by households is excluded.

Many challenges are nonetheless encountered when estimating the value of public investments germane to this scope and our topics. Restricting the scope of nonmarket production does not, for example, circumvent the need to impute a rate of return to public capital formation for coherency of total economy productivity analysis. And once we delve into certain topics, we encounter very specific measurement and research challenges, such as how to account for cultural assets, many of which are not, strictly speaking, intangible assets but whose intrinsic value to citizens is incalculable and therefore often described as “intangible.” Indeed defining what we mean by public investment (an issue we will discuss in a moment) presents challenges.

Finally, the limitations of the currently available data on real public outputs (e.g., public safety, education, health care) constrain our ability to reliably estimate the impact of public investments on the wider economy. An understanding of how real output measurement methods differ across the EU and other countries will need to be a component of the comparative productivity analysis of SPINTAN, e.g., as provided for health care spending by Schreyer and Mas (2013).

The SPINTAN measurement goal at its most practical level, then, is to complete the coverage of intangible investment by industry, making possible analysis of productivity for the total economy based on a complete accounting of intangible capital inputs. Most existing estimates of intangible assets, e.g., INTAN-Invest cover a subset of industries in the economy that productivity researchers (e.g., Timmer, O’Mahony, Inklar, and van Ark, 2010) refer to as the “market” sector. SPINTAN will thus estimate the intangible capital of “nonmarket” industries. “Nonmarket” industries consist of the following NACE Rev. 2 sections: (1) public administration and defence; (2) education; and (3) human health and social work activities. To this list we add (4) scientific research and development and (5) arts, entertainment and recreation.

\(^2\)INTAN-Invest is an unfunded research collaboration that maintains and extends work done under COINVEST and INNODRIVE. Until very recently, INTAN-Invest estimates were available for the aggregate market sector only, but now estimates according to 8 disaggregate industry sectors for 23 EU member states are freely available at www.INTAN-Invest.net. See Corrado, Haskel, Jona-Lasinio, and Iommi (2013, 2014) for further details, and also Niebel, OMahony, and Saam (2013) for related work conducted under INDICER.

\(^3\)The usual grouping of nonmarket industries also includes real estate, which is not discussed in this paper.
because these industries contain significant nonmarket production (e.g., federally-run research laboratories, public parks and museums) in many countries; see table 1 below. The use of “market” vs. “nonmarket” groupings of industries is thus not precise because an industry can reflect activity carried out by a mix of producers, as is evident with NACE Section R and the larger section of which NACE Section MB is a part.

<table>
<thead>
<tr>
<th>NACE SECTION</th>
<th>INDUSTRY TITLE</th>
<th>NACE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>Scientific research and development</td>
<td>72</td>
</tr>
<tr>
<td>O</td>
<td>Public administration and defence; compulsory social security</td>
<td>84</td>
</tr>
<tr>
<td>P</td>
<td>Education</td>
<td>85</td>
</tr>
<tr>
<td>QA</td>
<td>Human health activities</td>
<td>86</td>
</tr>
<tr>
<td>QB</td>
<td>Residential care and social work activities</td>
<td>87-88</td>
</tr>
<tr>
<td>R</td>
<td>Creative, arts and entertainment activities; libraries, archives, museums and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>other cultural activities</td>
<td>90-91</td>
</tr>
<tr>
<td></td>
<td>Gambling and betting activities; sports activities and amusement and recreation</td>
<td>92-93</td>
</tr>
</tbody>
</table>

Note—NACE Rev. 2.

Before we leave the subject of NACE-defined industries, it must be said that in some countries there are industries with significant government or nonmarket production besides those listed in table 1. These tend to be industries that engage in activities not germane to our topic areas, e.g., transportation and homebuilding. On the other hand, there are industries of interest to our work in SPINTAN that are not listed, e.g., those receiving government R&D subsidies, but such industries tend to have little nonmarket production other than their own-produced intangible assets for which we have already accounted.

Industries vs. Institutional Sector. National accountants classify economic activity according to institutional sectors, not industries. Figure 2 illustrates the relationship between national account sectors and the nonmarket/market conceptual distinction in a simplified way. The national accounts nonmarket sector is found above the horizontal line in figure 2 and consists of general government (GG) and nonprofit institutions serving households (NPISH). The public sector is found to the left of the vertical line in figure 2 and consists of general governments and government sponsored enterprises (GSEs).

4Appendix table A1 (page 44) shows the full intermediate structure of NACE Rev. 2.
Investment activities of the general government and nonprofit institutions (NPI) are the focus of SPINTAN. It is important to recognize that many nonprofit institutions are considered market producers according to the System of National Accounts (SNA) because they are able to charge “economically significant” prices. In other words, such institutions are not NPISH but rather are NPIPP (nonprofit institutions with pricing power) where NPI=NPISH+NPIPP. Educational institutions, for example, can be public or private, and among the latter, while most are nonprofit institutions, some are classified as market producers, i.e., they are in the NPIPP segment of the lower right quadrant of figure 2. The arts and entertainment industry is equally diverse in terms of its institutional composition, as is health and social services in certain countries. All told, all but one of the industries that we work with (NACE 84, public administration and defence) consists of a mix of institutions: business (whether for-profit or nonprofit), nonprofit institutions serving households, and general government. The distinction

5The SNA instructs that producers be classified as businesses if they are able to charge economically significant prices, e.g., schools, colleges, universities, hospitals constituted as nonprofit institutions are to be classified as market producers when they charge fees that are based on their production costs and that are sufficiently high to have a significant influence on the demand for their services (European Commission et al., 2009; para 4.88). In practice, for European countries, the European System of National and Regional Accounts (ESA) implement this as a quantitative criterion, considering economically insignificant prices to be those that cover less than half the cost of production.

6Note that the United States and Canada follow a different convention in that the general government and government sponsored enterprises sectors are kept as separate industries in industry and input-output accounts, with the result that other industries largely pertain to private enterprises, i.e., activity to the right of the vertical line in figure 2. This means that U.S. public schools and universities, Veterans Administration hospitals and the like are not included in the U.S. education and health industry; the postal system is not in the transportation sector, etc., whereas such organizations would be spread across industries based on homogeneity of production.
between institutional sector and industry is very important because the information provided by the available data is quite different. We elaborate on this issue in section 3 below.

Finally, we note that because of the societal focus of our topic areas, in SPINTAN we do not concern ourselves with GSEs even though these tend to be companies traditionally associated with public infrastructure investment, e.g., rail and power companies. And to be perfectly clear, we also do not concern ourselves with segments of nonprofits outside our topic areas, e.g., religious organizations, or membership organizations serving business.

Functions of Government. The functions of government, according to economics textbooks, include maintaining legal and social framework, providing public goods and services, maintaining competition, redistributing income, correcting for externalities, and stabilizing the economy. This is formalized in national accounting as a system called “classification of the functions of government,” or COFOG.

Table 2: Functions of Government

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General public services(^1)</td>
</tr>
<tr>
<td>2. Defense</td>
</tr>
<tr>
<td>3. Public order and safety</td>
</tr>
<tr>
<td>4. Economic affairs(^2)</td>
</tr>
<tr>
<td>5. Environmental protection</td>
</tr>
<tr>
<td>6. Housing and community amenities</td>
</tr>
<tr>
<td>7. Health</td>
</tr>
<tr>
<td>8. Culture and recreation(^3)</td>
</tr>
<tr>
<td>9. Education</td>
</tr>
<tr>
<td>10. Social protection(^4)</td>
</tr>
</tbody>
</table>

1. Includes interest payments.
2. Transportation affairs, general economic and labor affairs, agriculture, energy and natural resources.
3. Also includes religion.
4. Disability and retirement income, welfare and social services, unemployment and other transfers to persons.

Table 2 below shows a list of the ten COFOG categories used to classify government expenditures. The categories are largely self-explanatory except the first, general public services. This category includes expenses related to executive and legislative organs, financial and fiscal affairs, external affairs, foreign economic aid, general services, general R&D, and interest payments on debt. The category excludes, however, expenditures on such items specifically related to one of the two-digit classification structure for the purposes of NPI is shown as Appendix table A2 (page 45), in which it can be seen we cover three of the nine one-digit categories.

\(^7\)The two-digit classification structure for the purposes of NPI is shown as Appendix table A2 (page 45), in which it can be seen we cover three of the nine one-digit categories.
the other functions, e.g., R&D related to defense is included in defense, R&D related to health is included in health, etc.

Looking at the list of items in table 2, the three functions circled, health, education, and culture and recreation correspond rather directly to three of the SPINTAN topics (see again figure 1, page 2); they also correspond to certain of our industries (see again table 1, page 4). R&D, as just noted, is an activity that tends to be sprinkled across several COFOGs, but all told each activity in table 2 involves the provision (or funding) of a service activity. COFOG data then are a breakdown of government expenditure according to service type, and as such, COFOG data may be mapped to NACE industries as well as to income and final demand. SPINTAN will need such mappings.

Government Expenditure. Government expenditure includes payments for all government consumption and investment, as well as for payments for subsidies, transfers, and interest on public debt. In national accounting the acquisition (or production) of goods and services for community use by the government is classified as final consumption expenditure because it is spending aimed at satisfying current collective needs. Government acquisition (or production on own-account) of goods and services intended to create future benefits, such as infrastructure or research spending, is government investment (or capital expenditure). These two types of final spending by governments, consumption and investment, are components of GDP.

Transfers and subsidies are excluded from GDP because they are goods and services (payments) supplied without any transformation. As a consequence, when one hears statements such as “government spending is 50 percent of GDP in the EU”—a generally accurate metric (see figure 3)—it must be borne in mind that a significant portion of government expenditure is not final spending that is included in GDP, and thus private final spending is not the remainder. A framework for SPINTAN requires a more refined view on how to think about the contribution of public spending to production, income generation, and consumption.

Transfer payments may be distinguished according to whether they are current or capital transfers. Current transfers directly affect the level of disposable income for the purpose of influencing consumption. Indeed the bulk of the EU’s government expenditure—nearly 40 percent of GDP (2002–2012 average)—is for maintenance of household income. The comparable U.S. figure is less than 25 percent, and broadly speaking, this difference accounts for the difference between the EU and US figures for government expenditures as a percent of GDP.
Capital transfers, assuming for the moment these are domestically bound, primarily are investment grants, which are payments to market producers for the acquisition of fixed assets. They differ from subsidies, which are not tied to the purchase of an asset, but which have a similar economic impact in that they both subsidize the return to capital, a matter discussed more extensively in section 4 below. The objectives and recipients of investment grants vary across countries and time. For instance funds may be used to offset the difficulty that SMEs have obtaining capital given the risk-averse nature of financial markets, or they may be used for the revitalization of a rural area, or they may be for explicit agricultural, transportation, energy, or housing investment projects.

From a conceptual point of view, one might think that investment financed from the budgets of public entities is public investment. But under SNA/ESA guidelines, gross fixed capital formation (GFCF) by general government excludes investment grants and all investment by GSEs; see again figure 2. This means that when, say, GSE-run power companies receive public funds for expansion of the electric grid, or certain universities receive public funds to build new science education facilities, the investment may not appear as government gross fixed capital formation in national accounts. In this sense, general government GFCF potentially excludes a significant portion of publicly-financed investment.

The rate of government investment (i.e., investment relative to GDP) in the European Union and United States is shown in figure 4. The red triangles include investment grants and the
blue bars show gross fixed capital formation. All told, for most of the countries plotted, the public investment rate (i.e., including investment grants) ranges from 2 to 4 percent of GDP, i.e., public investment is very small relative to total public expenditure.

A very important first point to make regarding this figure is that, as of this writing, data for the European Union do not yet reflect R&D capitalization whereas data for the United States do. After updating the EU data to reflect R&D capitalization, EU government investment rates will move closer to the rate for the United States. Another point regarding figure 4 is that including investment grants raises the rate for the EU15 aggregate by .4 percentage points, whereas the U.S. rate is unchanged.

The most striking feature of figure 4 is the variation in relative importance of investment grants across EU countries; they range from small negatives or nil for some to 1+ percentage points for others (Austria, Italy, and UK). One source of these differences is simply governance structures, i.e., central government investment grants may be administered by other levels of government (in which case the transfer nets out in general government, and the investment appears as government GFCF) or by private industry (in which case a sectoral transfer occurs,
and the investment is recorded as private GFCF). These are matters that loom large in national accounting but are of little consequence when assessing the size and direction of a country’s rate of public investment. Moreover, information on the industry distribution of investment grants is not readily available, and thus we do not yet know if they loom large in the capital expenditure of FOGs in our topic areas.

A final point is that the likely substantial impact of R&D capitalization on the rate of public investment underscores the relevance of SPINTAN’s work to identify and estimate non-R&D public intangibles. R&D capitalization added more than 1 percentage point to the U.S. government investment rate, thereby presenting a very different picture of the relative size of government investment in the overall economy. Will this also be the case for non-R&D public intangibles after SPINTAN? In the next two sections we lay the conceptual groundwork for the analysis we pursue to answer that question.

2 Asset Boundary

What intangible investments are undertaken by government and nonprofit producers? What societal assets are produced by these organizations? These are very different questions. We start with the first, which is answered by appealing to CHS.

2.1 CHS-type Assets

Table summarizes the CHS list of intangibles assets (on the left) and maps them to the public or nonmarket sector (on the right). As may be seen, two broad categories of public intangible assets are proposed. One consists of information, scientific, and cultural assets, and the second is societal competencies. Before we discuss what’s different across the two columns, let us make a few points about the similarities. First, while the character of some assets are rather different when produced by public institutions, e.g., R&D, brands, and mineral exploration, one may still draw a correspondence between these assets across sectors. For example, Jarboe (2009) defines public investments in brand as expenditures for export promotion, tourism promotion, and consumer product and food and drug safety (i.e., investments in product reputation). The correspondence for computer software, purchased investments in organizational capital, and function-specific worker capital (employer-provided training) is of course far closer.
Table 3: **Knowledge Capital in a Total Economy**

<table>
<thead>
<tr>
<th>Market Sector</th>
<th>Nonmarket Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computerized Information</td>
<td>Information, Scientific, and Cultural Assets</td>
</tr>
<tr>
<td>1 Software</td>
<td>1 Software</td>
</tr>
<tr>
<td>2 Databases</td>
<td>2 Open data</td>
</tr>
</tbody>
</table>

Innovative Property

<table>
<thead>
<tr>
<th>R&D, broadly defined to include all NPD costs</th>
<th>Cultural and heritage, including arch. & eng. design</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Entertainment & artistic originals

<table>
<thead>
<tr>
<th>Design</th>
<th>Mineral exploration</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Economic Competencies

<table>
<thead>
<tr>
<th>Brands</th>
<th>Societal Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Organizational capital

<table>
<thead>
<tr>
<th>(a) Manager capital</th>
<th>(b) Purchased organizational services</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Firm-specific human capital

<table>
<thead>
<tr>
<th>(employer-provided training)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

Note—NPD=New Product Development, including testing and spending for new financial products and other services development not included in software or conventional science-based R&D.

The circled items are rather different in a public sector context. Open data refers to information assets in the form of publicly collected data issued and curated for public use. This runs the gamut from patent records to demographic statistics and national accounts to geographic information and local birth/death records. After asking the question, What are public sector intangible assets in the United Kingdom? [Blaug and Lekhi (2009, p. 53)] concluded that “perhaps the most important . . . is information assets.” [Jarboe (2009)] includes government information creation as a high-level category in his estimates of U.S. federal government intangible investments. The category includes spending on statistical agencies, the weather service, federal libraries, nonpartisan reporting and accounting offices, and the patent office, which suggests information assets loom large in the United States as well. Indeed, it has long been held that the U.S. Census Bureau’s release of its TIGER (Topologically Integrated Geographic Encoding and Referencing) dataset—in 1991—bootstrapped the country’s booming geospatial industry.

Cultural assets are public intangible assets whose services are used in production in cultural domains dominated or influenced by the public and nonmarket sectors; cultural domains as defined by the UNESCO Framework for Cultural Statistics are shown in figure 5. The capital used

[Appendix table A3, page 46](#) reports an extensive list compiled for the MEPSIR (Measuring European Public Sector Information Resources) project.
in many domains is included in existing estimates of private capital (tangible and intangible), but public investments (or funding) for new asset creation (especially in domains A, B, and C) needs to identified and newly capitalized.\footnote{Note that cultural assets are notionally grouped with public architectural and engineering design, on the grounds that the British Museum’s tessellated glass ceiling or the Louvre Pyramid are as valuable (and as incalculable) as the museums’ contents although of course their correspondence to private counterparts is apparent. Cultural assets also would include the value of curative activities not normally capitalized in national accounts (a form of humanities R&D, if you will). An in-depth analysis and review of sources and methods used to estimate information assets and cultural assets in SPINTAN is forthcoming (Jäger and Iommi, 2014).}

Finally, organizational investments on own-account (professional and manager time devoted to organizational innovation) take on a somewhat different character in a public setting
2.2 Social Infrastructure

Most of the spending currently classified as public investment is spending on physical infrastructure (roads, bridges, water supply, sewers, electrical grids, communication systems) where returns to society accrue for many, many years. This accords with the Oxford dictionary definition of infrastructure: the basic physical and organizational structures needed for the operation of a society or enterprise. Hospitals, educational institutions, public libraries, police stations and firehouses also are infrastructure according to this definition, but the reasons for thinking this have less, indeed very little, to do with the longevity and complexity of the physical equipment and structures involved in producing the underlying service. Rather than the usual economic notion of infrastructure as a capital-intensive natural monopoly (as in Gramlich 1994), what is typically meant are the societal benefits—the spillovers, or externalities—that result from citizens “consuming” the service.

Over the past decade or so, the notion that governments also provide “soft” infrastructure via the nature of the services themselves has gained recognition based on a body of evidence that the economic benefits of providing such “social infrastructure” outweigh the costs and result in a net return on investment. From a SPINTAN measurement point of view, the issue is not so simple, mainly due to the fact that household production is outside the boundary of economic activity that we consider. Another matter is distinguishing between private and social benefits, or externalities. The existence of social benefits may have implications for policy, but their presence or absence says nothing about whether a service produces long-lasting returns or where the production of the capital (if indeed capital is being built) takes place. Consider now the topics of education and health, starting with education.

Education. Studies show convincingly that returns to education accrue to private individuals in the form of higher wages. There are no paybacks to producers of education services (taken as a whole, except perhaps very indirectly); nor do returns apparently accrue to society in the form of an extra kick to economy-wide productivity (i.e., a spillover) after accounting for the skill
composition of the workforce.\(^\text{11}\) With regard to the education process, its fundamental feature as modeled by Jorgenson and Fraumeni (1989; 1992a; 1992b) is the lengthy gestation period between the application of the educational inputs—mainly the services of teachers and the time of their students—and the emergence of human capital embodied in graduates of educational institutions. From the Jorgenson-Fraumeni (JF) perspective, the household invests time and money via purchases of teacher services (either at cost for public institutions in national accounts or actual outlays in the case of private services) to build human capital.

This human capital production process is out of scope for GDP. Inside that boundary, however, are investments that improve the capacity of the educational system to deliver improved teacher services without a commensurate increase in cost. For example, expenditures on teacher training would be considered investment in SPINTAN because benefits include increased effectiveness of the system to deliver educational services (not simply increased returns to individual teachers via higher wages).\(^\text{12}\) All told, our analysis primarily focuses on the investments needed to promote the organizational effectiveness of educational institutions, from classroom deployment of modern communication technology to research productivity.\(^\text{13}\)

We believe, however, that it is possible to view the service capacity an education system as social infrastructure by carefully delineating the intersection of its economic activity with the JF model of human capital formation. The topic is thus revisited in section \(\text{3}\) below.

Health Care. Consider now the consumption and production of health care services. The same principles set out for education apply, but they don’t lead to very clear answers. First, there is a vast literature studying the effectiveness (i.e., returns) to various treatments of various diseases. Unfortunately, this literature cannot be summarized as easily as the literature on the returns to education.

\(^{11}\)Corrado, Haskel, and Jona-Lasinio (2014) and Corrado and Jäger (2014a) examine this topic in light of a literature that tends not to find excess returns to education at macro or industry levels. Both studies use a cross-country econometric approach, Corrado et al. (2014) at the “market sector” level for 10 EU countries from 1998 to 2007, and Corrado and Jäger (2014a) at the NACE 2 industry-level (market sector industries only) for 8 EU countries from 2002 to 2011, and both studies detect evidence of productivity spillovers to increases in labor composition, i.e., workforce skill upgrades. This topic merits further investigation under SPINTAN.

\(^{12}\)Yes, that teacher training is investment whereas the education of a teacher is not is akin to the much derided practice in national accounts that motor vehicles purchased by private enterprises or governments constitute capital formation whereas purchases by households do not. Indeed the reasoning is exactly the same: that services from household-owned vehicles are inputs to out-of-scope household production and thus not capital investment included in GDP.

\(^{13}\)It is of course too early in experimenting with open online courses (MOOC) to determine the social benefits of very radical approaches to utilizing technology for reorganizing and “opening” educational services to the public at large.
Second, the health care process is often modeled as the treatment of diseases, although the notion that households promote their own wellness through consumption of preventative care (vaccines) and engagement in wellness-enhancing activities (diet, exercise) is another approach. Does this wellness process work the same way as the educational process, i.e., as in building human capital? The answer would appear to be yes, but what is less than clear is whether a broader model in which household production plays a key part is more appropriate. What we can say, however, is that, as with with educational institutions, SPINTAN will study organizational capital (and of course ICT capital) and its effectiveness in promoting efficiency and productivity of health care institutions.

Setting aside the location of production and whether health care spending is curative or preventative, let us simply assume that such spending creates benefits in the future and ask,

Note that the intangible capital literature does not capitalize employer expenditures on wellness. Such expenditures would appear to meet the criteria for investment even if production of human health is placed in the household sector. Although we are unaware of broad-based statistics on such spending, in the United States, where employers shoulder a large portion of health care costs, there appears to be a growing recognition that preventing disease and maintaining good health pay significant dividends to business. A recent RAND review of available studies (Mattke, S. et al. 2013) concluded that medical costs in the United States are reduced approximately $3.27 for every dollar spent on workplace wellness programs.
To whom do these benefits accrue? Beyond the person or persons that benefit directly, the commonly held view is that society itself benefits because (a) future health care system costs are lowered, (b) workplace absenteeism is lowered, and (c) workforce capacity increases with greater human longevity. In this sense the commonly used framework for productivity analysis captures these benefits of human wellness, as the schematic in figure 6 shows. The schematic shows output-based links on the left and household income-based links on the right, thereby also illustrating the connections between the burgeoning literature on measuring societal well-being (e.g., OECD Secretariat, 2014) in which human health (esp., longevity) plays an important role.

3 Framework for Analysis

The scope of capital investment, or the asset boundary, defines the value of wealth in an economic system. National accountants define an asset as something that is owned by an economic unit from which economic benefits are derived over a period of time greater than one year. CHS grounded their definition of investment following the optimal growth literature (Weitzmann, 1976, 2003), namely, as spending designed to increase consumption in a future period.

An increase in consumption occurs via an expansion of the economy’s productive capacity, and thus a production possibility frontier was explicit in the CHS framework. Indeed in the CHS framework the future benefits of investment spending were derived solely from private productive capital formation. A social welfare function also was implicit but analyzing welfare has not been a focus in the intangibles literature to date. Below we follow Jorgenson and Landefeld (2006) and take steps to incorporate social welfare in the analysis.

3.1 Sources and Uses of Economic Growth

We consider both the sources and uses of economic growth and evaluate to what extent they are affected by the inclusion of private and public intangibles in the asset boundary. We begin by looking at real output, inputs and productivity in the usual way:

\[V(C, I) = A \cdot X(L, K) \]

(1)

with sources-of-growth analysis written as:

\[\varpi_C \Delta \ln C + \varpi_I \Delta \ln I = \varpi_L \Delta \ln L + \varpi_K \Delta \ln K + \Delta \ln A \]

(2)
where V is total real output (i.e., real gross value added), and ϖ and ν denote Divisia shares of outputs and inputs in current prices, respectively, in gross value added. Total real output is expressed in (1) as a production possibilities frontier for consumption (C) and investment (I), where C and I are produced from domestic labor (L) and capital (K) inputs augmented by multifactor productivity (A). C consists of personal consumption and government consumption, and I consists of private investment, government investment, and rest-of-world investment.

The capitalization of intangible assets produces a direct impact on the sources of growth via investment (I) and capital services (K) in the above equations. But what are the effects on the uses of economic growth? And on social welfare? To answer this question we follow Jorgenson and Landefeld (2006, esp. pages 98–104) and consider that economic growth creates opportunities for future as well as present consumption, summarized in real net expenditures Z.

These opportunities are generated by the expansion of real national income Y, comprising real labor and net property income (L and N) augmented by changes in the level of living B:

\begin{equation}
Z(C, S) = B \cdot Y(L, N)
\end{equation}

\begin{equation}
\omega_C \Delta \ln C + \omega_S \Delta \ln S = \nu_L \Delta \ln L + \nu_N \Delta \ln N + \Delta \ln B.
\end{equation}

Real net expenditures Z consists of real consumption C and real saving S, net of depreciation. S is comprised of personal, business, and government net saving. The share-weighted growth of real net expenditures as per the LHS of equation (4) is the sum of the share-weighted growth of real incomes plus growth in the level of living, per the RHS of equation (4).

Real net expenditures is a measure of social welfare in the current period in that it consists of the quantity of current consumption and the quantity of the net increment to future consumption (change in real saving), as suggested by Weitzman.15 Equation (4) shows that social welfare Z is affected by the capitalization of intangibles directly via changes to real saving S and net property income N, both of which are components of the economy’s income and expenditure account.

The level of living is not the same as multifactor productivity. The latter is a measure of productive efficiency whereas the level of living implies that, for a given supply of factor services generating labor and property incomes, the economy may produce greater opportunities for

15Note that aggregate real net expenditure/social welfare is not built from (or decomposed into) average individual social welfare and its distribution as in Jorgenson (1990) and Jorgenson and Slesnick (2014) although doing so would be a logical next step.
present and future consumption (Jorgenson-Landefeld, page 88). As a practical matter, because of the close correspondence of the labor contributions to A vs B and the fact that the capital services contribution to A differs from the net property income contribution to B primarily because capital consumption is excluded from the latter, estimates of $\Delta \ln B$ will be close to $\Delta \ln A$ for economies with stable investment shares by asset type. A shift to shorter-lived assets, all else equal, creates a wedge between $\Delta \ln A$ and $\Delta \ln B$ (with $\Delta \ln A > \Delta \ln B$ during the transition period), whereas a shift towards long-lived assets has the opposite impact.

The above framework can be readily expanded to recognize that benefits from asset ownership accrue not only from capital formation but also from exchanges of “nonproduced” assets between business and governments, e.g., mineral or spectrum rights granted or sold to producer units by governments. The framework can also be adjusted to account for “inventories” of societal assets—such as schooling-produced knowledge assets—as we now discuss.

3.2 Schooling-Produced Knowledge Assets

This section sketches out a way to think of education services as producing a societal asset (i.e., a valuable) as opposed to regarding education services as an input to the production of human capital within households. It follows the logic of Ruggle’s approach to accounting for consumer durables (Ruggles, 1983; see also Moulton, 2001) and the SNA’s approach to the treatment of valuables.

Schooling as social infrastructure capital. The basic idea is that society’s consumption of education services is in fact the acquisition of schooling knowledge assets ΔE whose change in value $P^{ES}\Delta E$ should be included in saving and wealth even though it is not used in current production (or consumed). Rather the assets are held in inventory, within the school system, until students graduate and enter the working age population, at which point the assets are withdrawn from the stock. In this view, the real output of an education system Q_{ES} is the knowledge stock of this year’s graduates plus the increment to knowledge held by students still within the system, or $Q_{ES} = E^{Grads} + \Delta E^{InSchool}$ [16] This in turn implies $Q_{ES} \equiv \Delta E$ because at any point in time last year’s graduates have been withdrawn from the stock (and entrants at the lowest level are assumed to have a zero stock).

[16] Note the similarly of this syntax to “production = sales+inventory change.”
The production function F^E for education services is then given by

\[Q_{t,ES} = F^E(K_{t,ES}, L_{t,ES}) \]

which implies

\[E_t = F^E(K_{t,ES}, L_{t,ES}) + E_{t-1} \]

where E_{t-1} is the beginning-of-period knowledge stocks held by this year’s students, and education services production is the schooling-produced increment to those stocks. There is no depreciation of schooling-produced knowledge stocks while students are in enrolled in school. K_{ES} and L_{ES} are the education system’s fixed capital and labor services inputs; intermediate inputs have been ignored.

These simple accounting relationships are directly related to the JF lifetime-income approach to human capital measurement. Some observers have suggested that the JF market component of human capital production be used to replace the existing measures of education services in conventional GDP (e.g., Ervik, Holmoy, and Haegeland 2003). Our “inventory” approach is a somewhat different adaptation of the JF model for inclusion in conventional accounts, but like the JF work and as discussed in Christian 2014, our approach includes values, volumes, and prices as basic elements, and in that capacity embraces human capital within the conventional boundary of the SNA.

Our concept of schooling-produced knowledge assets E and human capital as modeled in the labor literature is as follows: Mincer’s seminal contribution (Mincer 1974) mapped the theory of investments in human capital to the empirical literature on the returns to schooling. According to Mincer’s model, at the end of each period of schooling, individuals (a) have a level of human capital consistent with that level of schooling, and (b) choose the optimal level of schooling (i.e., years in school) up to the point that the opportunity cost of one more year of schooling equals foregone earnings. This implies an individual’s return to schooling must be commensurate with these foregone earnings. In Mincer’s canonical wage equation, in which individual j’s wage is a return to human capital, there are two key terms, one a return to schooling and the other a return to work experience, suggesting $HC_j = E_j + LX_j$ where HC_j is individual j’s total human capital and LX_j is the portion acquired through work, i.e., labor market, experience.

From the point of view of the schooling system, this suggests schooling-produced knowledge assets can be defined as the present discounted value of expected wages of graduates upon entry
to the labor market, i.e., when the return to experience is virtually nil. Note that one still needs
to account for returns to student time spent in school if schooling extends beyond a compulsory
term, in which case the valuation basis becomes the labor market entry wage adjusted for the
opportunity cost of time spent in school. The JF model is not reviewed in any detail here
but it is important to note that the model distinguishes across levels of schooling j at a point
in time, and in its simplest form as applied to our context, given expected labor market entry
wages w_j, opportunity cost c_j, and school enrollments S_j, the real value of knowledge assets
produced by schooling may be computed as follows:

$$E = \sum_j S_j (w_j - c_j) (1 + \rho)^{y_j}$$

(7)

where ρ is a social discount rate and y_j is years to graduation of students enrolled in level j.
Although not immediately apparent from (7), drop-out rates and graduation rates at each level
of schooling are built into components of the measure, and low productivity of a school system
diminishes the quantity of schooling-produced knowledge assets.

Besides relative wage rates, labor market conditions are not factored into the above set
up, i.e., probabilities that students will be employed or not upon graduation or leaving the
system are not factored into the calculation of E. When we take the step to consider knowledge
assets produced and held in school systems as societal assets, and thereby schools as social
infrastructure, it seems reasonable to ponder how poor labor market conditions might diminish
the societal value of resources devoted to schooling (just as low productivity of a school system
itself does). We leave the analysis of this topic for later study, however.
Current Account, Capital Account, and Price Index. When schooling is treated as social infrastructure, consumption is decreased by the cost of the net acquisition of knowledge gained during the year due to schooling and net saving is increased accordingly. The value of these magnitudes is the currently estimated value for the consumption of education services in national accounts. As previously noted, there is no depreciation-like charge to partially compensate for the decrement to consumption because there is no economic depreciation of the asset produced by schooling (it is not being used in current production). The counterpart in the capital account is an increase in investment equal to the net acquisition—which is equal to the decrement in consumption so there are no effects on nominal GDP.

Net acquisition in the case of marketed goods is simply purchases less disposals, as in accounting for inventory change. This is why the counterpart in the case of schooling is the full cost of education services because, if the number of students in a school system decreases (due to high net graduation rates, or for that matter, high drop-out rates), then costs are lower and “disposals” are accounted for accordingly. The quality of the outcomes of the educational system (graduates versus drop-outs) needs to be reflected in the price index P^{ES} used to obtain the quantity index for schooling knowledge asset production. The appropriate P^{ES} can be obtained by dividing ΔE into the currently estimated value of household, NPISH, and general government consumption of education services.

Of course, to obtain the appropriate ΔE we would need JF-style human accounts as in Christian (2014), who provides time series for the United States from 1998 to 2009, and Lui (2014), who provides estimates for selected years for 18 OECD countries (8 of which are SPINTAN countries).

Wealth of the Society. Equations (1)-(4) as set out in the previous section are unaffected by the capitalization of social infrastructure but the composition of key components change. Real gross investment I includes, as before, real gross fixed capital formation $\Delta K + \delta K_{-1}$ where K denotes the stock of productive fixed assets (as in fixed assets used in current production, tangible and intangible). P^{FA} denotes the replacement cost of the stock.

18The knowledge assets of graduates exiting the country needs to be excluded in this calculation if the probabilistic full resource cost of the annual education of foreign students is charged to them (i.e., their charges reflect the costs of their education discounted by the probability they enter the domestic labor force). In this way P^{ES} retains it interpretation as the domestic price of schooling-produced domestic knowledge assets because the cost incurred in producing a foreign graduate is fully offset in revenues, which are subtractions from nonmarket production values estimated on the basis of production costs. Nonmarket production valuation is discussed in section 4 below.
After recognition of schooling-produced knowledge assets, \(I \) also includes the net acquisition of knowledge capital held within the education system \(\Delta E \), which is equivalent to the real gross output of the education system. In nominal terms, gross investment, net saving, and wealth of the society are as follows:

\[
P^I = P^{FA}(\Delta K + \delta K_{-1}) + P^{ES}\Delta E \\
P^S S = P^{FA}\Delta K + P^{ES}\Delta E \\
W = P^{FA}K + P^{ES}E.
\]

Investments in education tend to be a function of the age structure of a society, and stable fraction of GDP in most advanced countries, suggesting that the implications of capitalizing investments in education as social infrastructure for real GDP and productivity change will largely depend on trends in the implied price index for education services. Notwithstanding, recognition of schooling assets as societal wealth packs an extra punch for net saving and, possibly, real net expenditures (relative to real GDP, that is) due to the fact that in moving from GDP to real net expenditures, no depreciation charge is taken.

3.3 Return to Nonmarket Capital

For market producers, the value of production is based on industry revenues, and the return attributed to capital is obtained as revenues less current expenses. Because nonmarket producers offer their products at a price that covers only part or none of the costs of production, revenues cannot serve as a measure of the value of production for nonmarket producers. National accounts therefore use the sum of costs incurred in production to value output. For governments and NPISH, capital costs are measured as the value of economic depreciation (capital consumption), thus ignoring that part of capital compensation reflecting the real net return.

The main reason for the national accounts convention lies in the fact that (a) to include a net return requires imputation, and that (b) any such imputation directly affects GDP and national income, and that (c) there is a broad spectrum of possible imputations. The imputation of a return to public investments is discussed in the OECD capital services manual (OECD, 2009), where a key point, also made earlier by Moulton (2004, p. 169), is that aiming to create a production account for the government sector—especially one that includes its contribution to total economy multifactor productivity—necessitates estimation of a net return to public capital.
formation. This was done, for example, in Mas, Pérez, and Uriel (2006) in their study of the contribution of infrastructure capital to economic growth in Spain where such capital is largely held by government entities.[19]

To illustrate the issue from a productivity perspective, let \(i \) be a NACE services industry or NACE section with institutionally-mixed producers, in which case \(i \)'s industry gross output and value added is the sum of activity by governments, NPISH, and market sector producers:

\[
P_i^V V_i = \sum_S P_i^V V_i^S = \sum S \omega_{S,i} \Delta \ln V_i^S
\]

where \(S \) is an index of sectors within industry \(i \) and \(\omega_{S,i} \) is a given sector’s Divisia share weight in total industry value added. Now for each \(S \), let capital payments be fully articulated and determined residually:

\[
P_i^K K_i^S = P_i^V V_i^S - P_i^L L_i^S,
\]

in which case industry value added productivity change \(\Delta \ln A_i \) can be expressed in the following equivalent ways:

\[
\Delta \ln A_i = \Delta \ln V_i - \nu_i^L \Delta \ln L_i - \nu_i^K \Delta \ln K_i
\]

\[
= \sum_S \Delta \omega_{S,i} \ln V_i^S - \sum_S \nu_{i,S}^L \Delta \ln L_i^S - \sum_S \nu_{i,S}^K \Delta \ln K_i^S
\]

\[
= \sum_S \omega_{S,i} \Delta \ln A_i^S
\]

where \(\nu_{i,S}^K \) is capital’s Divisia share for sector \(S \) in industry \(i \) based on (13). Note we assume that the technology for producing \(i \) makes no material use of intermediate inputs produced elsewhere in industry \(i \).

Consider now \(\Delta \ln A_i^G \) for the nonmarket sector portion of total industry \(i \). Adding a net return to nonmarket capital adjusts value added and capital compensation equally, and real output and capital contribution quantity change within the sector equally too, with the result

[19]Imputing a return to government capital is a common move by productivity researchers interested in total economy performance measures, e.g., as in the many works of Jorgenson and associates conducted for the United States. More recently, the imputation also is made for official U.S. total economy multifactor productivity estimates issued by the BLS (Harper et al., 2009). From 2002–2006, the adjustment averages 3.9 percent of GDP (calculated using table 5 of Harper et al., 2009).

Besides Mas et al. (2006), we are unaware of European productivity studies that have imputed a net return to capital used in nonmarket production.
that estimated $\Delta \ln A_i^G$ is unaffected. But as equation (14) also makes clear, the measured contributions of $\Delta \ln A_i^G$, $\Delta \ln K_i^G$, and $\Delta \ln V_i^G$ to their respective industry i aggregates are affected. All told, both for industries and the total economy, the contribution of nonmarket activities will be understated (as in under-weighted) unless a net return to capital is imputed.

A dataset that (1) cross-classifies industry-level information by institutional sector based on national accounts data, (2) imputes a return to capital compensation in the general government and NPISH subsectors, and (3) recomputes relevant economic aggregates circumvents the above-described problems and is the desiratum for SPINTAN. A forthcoming SPINTAN background paper explores the relevant alternatives for imputing a rate of return to government capital (Corrado and Jäger 2014b).

Note that aggregation in such a database can proceed along multiple lines, giving rise to the possibility of computing aggregate productivity from (1) a “one-step” procedure (aggregating over all assets to obtain aggregate capital services, aggregate labor services, and aggregate productivity) and (2) a multiple-step procedure, say, from sector-by-industry productivity to industry productivity (or to sector productivity), and then from industry (or sector) productivity to total economy. Following Jorgenson, Ho, and Stiroh (2005), one can interpret differences between the one-step and multiple-step total factor productivity measures as “reallocation” effects; for further discussion see also Baldwin and Gu (2007); Oulton (2007); OECD (2009, pages 150-151); and Jorgenson and Schreyer (2012).

4 Government in GDP, National Income, and Industry Output

To reconsider the impact of changes in production and asset boundaries for each of the functions of government (FOG) listed in table 2, we need to set out the conceptual relationships between the value of total government expenditure on each FOG service i and the value of government final spending and government output of the same service. We also need to know the relationship between government subsidies for private production of, or government grants for investment by private producers of, a given type of product or service associated with FOG i.

4.1 Components of Government Expenditure

Let us first disaggregate total expenditure on FOG i, denoted $GExp_i$, according to whether expenditure is for (1) final spending $P_i^G G_i$ on the service or for (2) nonproduction payments, where the latter fall into two major categories:
(a) Transfer payments, either capital transfers (mainly investment grants) to private producers for the acquisition of fixed assets used in the production of \(i\) \((TrB_i)\), or payments to households for consumption of goods and services \(i\) \((TrH_i)\) where \(Tr_i = TrB_i + TrH_i\).

(b) Subsidies, either for prices of products associated with \(i\) \((SbP_i)\), or for production of output \(i\) \((SbQ_i)\) where total subsidies \(Sb_i = SbP_i + SbQ_i\).

Thus we have

\[
GExp_i = P^G_i G_i + (Tr_i + Sb_i) .
\]

Interest on public debt and other capital transfers are ignored.

Final spending. Final spending for each government function \(i\) can be expressed as the sum of final consumption or investment

\[
P^G_i G_i = P^C_i C_i^G + P^I_i I_i^G
\]

where investment is given by

\[
P^I_i I_i^G = P^IP_i IPur_i^G + P^IO_i IOwn_i^G
= \sum_a P_a(IPur_a + IOwn_a)_i^G .
\]

Equation (17) shows that total investment \(I_i^G\) consists of market purchases \((IPur_i^G)\) and production on own-account \((IOwn_i^G)\), where each sub-aggregate reflects summation over asset types \(a\) and \(P_a\) is the acquisition cost (investment price) of the \(a\)th asset type. As with other producing sectors, the government investment price index is a sector-specific, share-weighted combination of these underlying asset prices, a nuance not reflected in the notation.

Government final consumption of \(i\) represents the value of collective consumption services provided to the community (as distinguished from the individual benefits delivered as transfers and subsidies). How is this related to government output of \(i\), denoted as \(P^Q_i Q_i^G\)? The standard approach to setting out the relationship between final spending and production, given by Domar (1961), is to begin with output produced for use outside the sector, which is total gross output by assumption in our case, and then to distinguish between (a) output shipped to final demand
versus (b) output sold to other producing sectors, $Sales_{G,S\neq G}$ ($Sales$ by sector G to sector S where $S \neq G$). Thus we have

\[(18)\]
$$P_iQ_i^G = P_i^C C_i^G + P_i^{IO} IOWN_i^G + Sales_{i}^{G,S\neq G}$$

which yields

\[(19)\]
$$P_i^C C_i^G = P_iQ_i^G - P_i^{IO} IOWN_i^G - Sales_{i}^{G,S\neq G}$$

after rearranging (18) to solve for $P_i^C C_i^G$. Government final consumption of i then is equal to government gross output of i, less the value of own-produced capital formation, less receipts from sales to other sectors.

Because we typically don’t observe sales by nonmarket producers, we value their output by the sum of costs incurred in production, which we write in the usual way (i.e., as if it was based on industry revenue):

\[(20)\]
$$P_i^Q Q_i^G = P_i^L L_i^G + P_i^K K_i^G + P_i^{II} II_i^G - P_i^{IO} IOWN_i^G - Sales_{i}^{G,S\neq G}.$$

Substituting (20) into (19) yields an expanded expression for final consumption,

\[(21)\]
$$P_i^C C_i^G = P_i^L L_i^G + P_i^K K_i^G + P_i^{II} II_i^G - P_i^{IO} IOWN_i^G - Sales_{i}^{G,S\neq G} .$$

Now use (21) and (17) to expand equation (15),

\[(22)\]
$$GE_{xp_i} = \underbrace{P_i^L L_i^G}_{P_i^C C_i^G} + \underbrace{P_i^K K_i^G}_{P_i^C C_i^G} + \underbrace{P_i^{II} II_i^G}_{P_i^C C_i^G} - \underbrace{P_i^{IO} IOWN_i^G}_{P_i^C C_i^G} - Sales_{i}^{G,S\neq G}$$

$$+ \underbrace{P_i^{IP} IPW_i^G}_{P_i^C C_i^G} + \underbrace{P_i^{IO} IOWN_i^G}_{P_i^C C_i^G} + (Tr_i + Sb_i) .$$

Equations (15)–(22) are written in terms of general government production, but as a conceptual matter, they apply to any institutional sector or industry group.

In terms of measurement, consider first the market sector where goods are sold at observable prices. To fix ideas, consider an economy producing energy for sale to final consumers and for sale to other producers. Thus the total observed sales of energy equals $P_i^C C +$ sales outside the sector, i.e., sales as in the first and third terms on the right of equation (18). If, in addition,
the sector undertakes own account investment that is added to obtain $P_i^Q Q_i$. Consider next measurement in the non-market sector. There may be some sales outside the sector, in which case we can measure them, $Sales_i^{G,S \neq G}$. But if sales are not observed, we have to measure output based on the sum factor costs as in equation (20) (i.e., labor, capital, and purchased inputs).

Subsidies. Equation (2), the sources-of-growth (SOG) equation that guides the framework for SPINTAN measurement, is derived from the national accounting identity that the sum of factor payments equals aggregate production, or GDP, at market prices. In national accounts practice, the identity contains conceptual reconciling items, namely, subsidies and taxes on production and imports. The reconciling items often are ignored when focussing on SOG basics, but they are rather material when thinking about reclassifying a government subsidy as payment for a public asset. This is because they affect the measurement of capital income and gross return to capital, and thus the identification of capital services prices for SOG/productivity analysis as per Jorgenson (1963) and Jorgenson and Griliches (1967).

As previously mentioned, subsides may be product subsidies SbP_i or production subsidies SbQ_i where the subscript i now represents activity at the industry level. Subsidies on products are used to reduce the market price that producers charge customers, e.g., agricultural price supports. Production subsidies are payments directed at labor or capital employed in production, or for output produced, e.g., a government may provide subsidies for job creation or employer-provided worker training, or they may make payments to encourage energy production or for expanding national defense capacity. Because subsidies are offsets to costs (like revenue), they are augmenters of the return to capital and reflected in gross operating surplus, GOS. Gross operating surplus is the before-tax gross return to capital in national income accounts, where before-tax means before business income taxes (i.e, before the net effect of the corporate income tax, investment tax credits, and other producer tax expenditures).

In addition to business income taxes there are also taxes on production and imports, which consists of (a) taxes on products and imports $Tx PI_i$ and (b) other taxes on production $Tx Q_i$. The former are sales taxes or value added taxes, which are naturally not included in producers’ revenue or value of production. The latter are taxes on factors used in production; they include, e.g., employer payroll taxes or taxes on motor vehicles or buildings, i.e., we have $Tx Q_i = Tx Q_i^L + Tx Q_i^K$. In industry production accounts, factor taxes are combined with labor and
capital incomes because, from the producers’ point of view, both are payments for factor inputs to production.

In the national income identity subsidies are subtractions from income and taxes on production and imports are additions. Looking back at equation (20) and thinking about how to define labor compensation \(P_i^L L_i \) and capital compensation \(P_i^K K_i \) for SOG analysis, we have:

\[
\begin{align*}
P_i^L L_i & = W&S + OLI + TxQ_i^L \\
P_i^K K_i & = GOS + TxQ_i^K
\end{align*}
\]

where \(W&S \) is wages and salaries and \(OLI \) is other labor income (paid benefits) and mixed income is ignored. Gross domestic income (which equals GDP) can then be expressed as

\[
GDP \equiv GDI = \sum_i (P_i^L L_i + P_i^K K_i) + \sum_i (TxPI_i - Sb_i).
\]

The SNA counsels that industry and institutional unit production accounting be formulated in terms of “basic prices,” in which GDP at market prices is represented as the sum of industry (or institutional unit) gross value added at basic prices plus taxes on products and imports (\(TxPI \)) less subsidies on products (\(SbP \)), i.e.,

\[
GDP = \sum_i (P_i^Q Q_i - P_i^{II} II_i + SbP_i) + \sum_i (TxPI_i - SbP_i)
\]

where \(GV A^{BP} \) is gross value added at basic prices. Basic prices are designed to reflect the value of output produced, i.e., as in value created and retained by the producer. Product subsidies are added because the subsidy has been used to reduce the market price that producers charge customers, whereas the actual value of production is higher by the amount of subsidy. With regard to production subsidies, equations (24) and (25) imply

\[
P_i^{KBP} K_i \equiv GV A^{BP} - P_i^L L_i
\]

\[
= P_i^K K_i - SbQ_i
\]

In words, when the value of capital compensation is determined residually from industry GVA at basic prices, \(P^{KBP} K_i \) will be less than the full gross return to capital by the value of production subsidies paid to the industry by the government. In the EU15, production subsidies averaged
.7 percent of GDP from 2006 to 2013, with a fair bit of variation by country, i.e., from 2.0 percent in Belgium to .1 percent in the United Kingdom. Equation (26) is important to bear in mind given that most NSOs follow the SNA and issue production accounts at basic prices, and that GVA at basic prices is the basis for EUKLEMS growth accounts.

That said, three further points must be made. First, the value of production subsidies is rather small for many market-oriented economies. Second, and on the other hand, there is much room for judgment in what may be considered a production subsidy. National accountants tend to consider only direct payments to industry as production subsidies, whereas such expenditures are little different from tax expenditures (of which the R&D and energy tax credits might be considered examples). Third, comparable data on subsidies to production by industry and country are not readily available. Nonetheless, in order to have an accurate picture of gross capital income—and thus accurate weighting of the contributions of labor and capital for SOG analysis—it is necessary to have a complete accounting of public expenditures on subsidies, be they direct payments or tax expenditures. While this is a tall order (for possibly a small gain), logic compels it a desideratum for SPINTAN.

Investment grants. Investment grants are a capital transfer. They do not appear directly in equations (24) and (25) although they significantly impact the return to capital and implicit capital rental price P^K_i for recipient industries. Consider again equation (26). From a production perspective, $P^K_i K_i$ is the total rental equivalence payment for capital services. Rearranging terms suggests the total payment consist of two terms:

$$P^K_i K_i = P^{KBP}_i K_i + SbQ_i$$

An investment grant operates like an investment tax credit. It reduces the acquisition price of a fixed asset and thereby the private industry payment, much as a subsidy does.

To see this, suppose an investment grant TrB_i is given to industry i for the acquisition of a produced capital asset a in the amount $(P_a I_a)$. Let ψ_a be the ratio of the grant to the purchase price, $\psi_a = \frac{TrB_i}{(P_a I_a)}$. Then the after-tax purchase price of the asset is $P'_a = (1 - \psi_a)P_a$. This

\[\text{Indeed, one might argue that production subsidies are in fact little different from product subsidies in that both subsidize the return to capital. This position would lead one to question the utility of production accounts in basic prices but this is not our point. Rather we are trying to sort through how public expenditures appear in the data used for productivity analysis so that we may assess the data that need to be gathered for SPINTAN’s planned analysis of the impacts of public expenditures on productivity and economic growth.} \]
suggests, that in the absence of all other taxes, industry i’s capital rental equivalence price for a is given by

$$P_i^{KBP} = (\rho_i + \delta_a) P'_a$$

$$= (1 - \psi_a)(\rho_i + \delta_a) P_a$$

and its capital payment is

$$\sum_a P_i^{KBP} K_a = \sum_a (1 - \psi_a)(\rho_i + \delta_a) P_a K_a$$

$$= \sum_a (\rho_i + \delta_a) P'_a K_a - \sum_a \psi_a P_a K_a$$

These equations illustrate several points. First, for a very long-lived asset, ψ_a also is the approximate annuity value of the grant, thus the symmetry of investment grants expressed as in (28) with tax credits in the Hall-Jorgenson formula for the tax-adjusted cost of capital. Second, equation (29) shows that if investment grants are an important means of capital financing for an industry (ψ_a is nonnegligible for major assets), then very little capital income might be associated with very large capital stocks. As a practical matter, this simply means the capital was massively subsidized by public investment grants; the implied ex post return net of grants ρ_i may be low, high, or on par with the return to private investments. One cannot know without compiling data on TrB_i for the industry (more precisely, computing ψ_a for its assets).

Third, following equation (27), the simple transformation of (26), we can express total capital services in this industry as the sum of two components. The first is shown in equation (29), which represents the ith industry’s payment, and the second is the term subtracted from the RHS of the equation, the government’s payment in which the investment grant is expressed as a per period subsidy. Most of the points with regard to equation (26) also then apply here although there is one notable exception, namely, that the relative value of the subsidy-like payment likely is not all that small for many countries (see again figure 4, page 9).

In summary, the discussion of the last two subsections suggests (a) production subsidies are little different in an economic sense from product subsidies and tax expenditures, and (b) investment grants are little different from investment tax credits, or for that matter, subsidies. That production subsidies and the annuity value of investment grants are not included in the SNA concept of industry gross value added at basic prices, whereas product subsidies (along with the tax expenditures and investment tax credits implicit in capital compensation) are, is a
limitation that needs to be overcome in SPINTAN if such subsidies and grants loom large in our industries of interest/topic areas. It may be that they do not (e.g., if such expenditures mainly are for public utilities and public transportation) but we cannot know without gathering the relevant data.

4.2 GDP and Income Impacts of New Assets

We now consider three central measurement questions, namely:

1. Reclassification of a current input (intermediate purchase or own-produced service): What is the change to GDP and national saving that arises when a new asset type used in nonmarket production (and nonmarket production only) is introduced?

2. Reclassification of final consumption: What is the change to GDP and national saving that arises when a nonmarket final consumption service is regarded as a societal investment, i.e., as in social infrastructure?

3. Reclassification of a production subsidy to a payment for a public asset: What changes at the industry and aggregate level?

We proceed by first setting out key macroeconomic variables in terms of their nonmarket and market components, and then turn to analyzing these questions. Specifically, we consider adjustments to GDP in market prices (consumption and investment), net expenditure (NE), national income (NI), and national saving (NS). National saving is the increment to wealth, or future consumption, and thus changes to it reflect changes to the measured increment to wealth from current production. (Wealth also increases due to revaluation, which is not discussed.) All variables are in nominal terms.

First, we assume that services supplied by nonmarket producers are uniquely produced by the domestic nonmarket sector and are not traded. This is not far from reality, but it is not the same as saying the total supply of each i flows entirely from domestic nonmarket producers or that the sector buys only domestically-supplied investment goods and services. In the next subsection we move to consider the total supply of i and of investment goods and services used in the production of i, in which case the subscript i comes to be used to distinguish industries. For the task at hand, distinguishing among institutional units supplying i is for the most part
not necessary, and we drop the \(i \) subscript when we can and use it only when we need to say something about industries in particular.

The superscript “N” will be used to reflect nonmarket activity, technically, by governments and NPISH (but again, to look ahead, we will eventually look at the production of each \(i \) by all producers, and this should be borne in mind). Now, let “H” denote market activity by households, “M” market activity by market sector producers (i.e., mostly business, but also NPIPP), and “ROW” rest-of-world “sector” activity. ROW activities here consist of two magnitudes: “BOT” balance of trade (net exports) and “NFI” net factor income from abroad (i.e., the difference between GDP and GNP), and which together with international capital transfers comprise the current account balance.

For GDP and national income, the following identities hold:

\[
GDP = \underbrace{P_{C}C_{N}}_{\text{Nonmarket } C\&I} + \underbrace{P_{I}I_{N}}_{\text{Market } C\&I} + \underbrace{P_{C}C_{H} + P_{I}I_{M} + \text{BOT}}_{\text{Market } C\&I}
\]

\[
NI + Sb - TxPI = \underbrace{P_{L}L + P_{K}K_{N} + P_{K}K_{M} - (\delta P_{I}K_{N} + \delta P_{I}K_{M})}_{\text{Net Property Income}} + \underbrace{\text{NFI}_{\text{ROW}}}_{\text{Net Factor Income}}
\]

As all expressions are in nominal terms, net expenditures equals national income, and national saving is given by total income available for consumption \(NI + Tr \) less total consumption \(P_{C}C_{N} + P_{C}C_{H} \) and total taxes paid \(Taxes \):

\[
NS = NI + Tr - P_{C}C_{N} - P_{C}C_{H} - Taxes
\]

Household capital formation (e.g., housing) is not explicit in the above relations, nor are business transfer payments.

Reclassification of nonmarket intermediate consumption. We follow Fraumeni and Okubo (2005) in their sketch of the impact of capitalizing R&D in national accounts.

\(\text{CAB} = \underbrace{\text{BOT}}_{\text{Net Exports}} + \underbrace{\text{NFI}_{\text{ROW}}}_{\text{Net Factor Income}} + \underbrace{\text{CTr}_{\text{ROW}}}_{\text{Capital Transfers}} \)

With regard to complete the accounting of saving and investment flows under these assumptions, note that we also have:

\[
NS = \underbrace{P_{I}I_{N} + P_{I}I_{B} + P_{I}I_{\text{ROW}}}_{\text{Total Investment}} - (\delta P_{I}K_{N} + \delta P_{I}K_{B})
\]

where

\[
P_{I}I_{\text{ROW}} = \text{CAB} = \underbrace{\text{BOT}}_{\text{Net Exports}} + \underbrace{\text{NFI}_{\text{ROW}}}_{\text{Net Factor Income}} + \underbrace{\text{CTr}_{\text{ROW}}}_{\text{Capital Transfers}}
\]

where “CAB” is current account balance, and all statistical discrepancies are ignored.

Unlike Fraumeni and Okubo (2005), we concern ourselves here with the reclassification of intermediate consumption by nonmarket producers only.
to GDP, note from the first term in (30) that nonmarket final spending is either consumption or investment. Note further from (22), page 26 that if a purchased intermediate input, R&D services, say, is reclassified as investment, total actual outlays by nonmarket organizations do not change but via (21) measured consumption decreases by the amount of the purchased intermediate service and increases by the measured gross income earned on the new asset $P^K_{a+} K^N_{a+}$, where the subscript $a+$ denotes the new asset. If the new asset has a counterpart in the sector’s own nonmarket activities, e.g., R&D funded and conducted within the organization, the gross returns will be larger because the corresponding net stocks are larger.

These impacts and their consequences are summarized as follows:

(33)

$$\text{Adj. – Orig. Consumption} = -P^I_{a+} I^N_{a+} - P^I_{a+} I^{\text{Own}}_{a+} + P^K_{a+} K^N_{a+}$$

(34)

$$\text{Adj. – Orig. Investment} = P^I_{a+} I^{\text{Pur}}_{a+} + P^I_{a+} I^{\text{Own}}_{a+}$$

which implies the following for GDP:

(35)

$$\text{Adj. – Orig. GDP} = -P^I_{a+} I^N_{a+} - P^I_{a+} I^{\text{Own}}_{a+} + P^K_{a+} K^N_{a+} + P^I_{a+} I^{\text{Pur}}_{a+} + P^I_{a+} I^{\text{Own}}_{a+}$$

Noting that $P^I_{a+} I^{\text{Pur}}_{a+} = P^I_{a+} I^N_{a+}$, the overall GDP change simplifies to:

$$= P^K_{a+} K^N_{a+}$$

$$\text{GrossReturn to New Asset}$$

which says that GDP increases by the imputed gross income accruing to the new asset.

The change to national income reflects only the imputed net income accruing to the new asset:

(36)

$$\text{Adj. – Orig. National Income} = P^K_{a+} K^N_{a+} - \delta P^I_{a+} K^N_{a+}$$

$$\text{NetReturn to New Asset}$$

And the change in national savings NS is then:

(37)

$$\text{Adj. – Orig. NS} = P^K_{a+} K^N_{a+} - \delta P^I_{a+} K^N_{a+} - (P^I_{a+} I^N_{a+} - P^I_{a+} I^{\text{Own}}_{a+} + P^K_{a+} K^N_{a+})$$

$$\text{National Income Change} - \text{Consumption Change}$$
Noting again $P_{a+}IIP_{ur}^N = P_{a+}IN^N$ and also $P_{a+}IN^N = P_{a+}IIP_{ur}^N + P_{a+}IOWN_{a+}^N$, the above expression reduces to:

$$\frac{P_{a+}IIN_{a+}^N - \delta P_{a+}K_{a+}^N}{NetInvestmentChange}$$

which says that the change to national savings equals the change in net investment resulting from the capitalization of the new asset. In the general case, this is sufficient to offset the decrease in consumption so that the change in net expenditure (NE), the sum of the change in consumption and change in the increment to future consumption (or NS) is positive. We have then for NE

$$\text{Adj. } - \text{ Orig. } NE = -P_{a+}II_{a+}^N - P_{a+}IOWN_{a+}^N + P_{a+}K_{a+}^N + P_{a+}IN_{a+}^N - \delta P_{a+}K_{a+}^N$$

because as previously indicated we are in nominal terms, and NE = NI.

All told then, we see that GDP increases by the gross return to the new asset, and net expenditure increases by the net return. Although this increase in NE might be regarded as fairly small, it reflects two rather larger, partially offsetting mechanisms, namely, lower current consumption that is more than offset by current and future net returns to the investment. National saving increases, of course, by the full value of the new net investment.

Reclassification of nonmarket final consumption. As may be seen via equation (22), the algebra of these impacts is the same as the foregoing after substituting a final service component $P_{a+}C_{a+}^N$ for an intermediate input component $P_{a+}II_{a+}^N$. This would be the case where spending on a portion of health care services, say, is reclassified as investment.

Reclassification of subsidies to payments for public assets. Note first that the logical implication of equation (26) is that the “usual” expression for market sector industry output becomes

$$P_i^Q Q_i^M = P_i^L L_i + (P_i^K K_i - ShQ) + P_i^{II} II_i.$$

$$= Sales_i^{FD} + P_i^{IOWN} + Sales_i^{i,S\neq i}$$
where \(Sales_{i}^{FD} \) is industry \(i \) sales to final demand and

\[
P_{i}^{K} K_{i} \equiv P_{i}^{Q} Q_{i}^{M} + SbQ_{i} - P_{i}^{I} I_{i} - P_{i}^{L} L_{i}
\]

When a production subsidy is reclassified as a payment for a public asset, \(SbQ_{i} \) is reduced and \(P_{i}^{Q} Q_{i} \) (via sales revenue) increases by the same magnitude. Capital compensation in market sector industries thus does not change (but the previously overstated return to tangible capital is reduced).

In the purchasing industry (the nonmarket industry, specifically government), capital compensation increases by the gross return on the new asset, and thus total industry gross value added at factor costs changes by this amount \(P_{a}^{K} K_{a}^{G} \). GDP at market prices includes, however, an additional effect, namely, whether built from industry data as expressed in equation (25) or built from expenditure data as in equation (30). GDP also increases by the value of the new investment purchases \(P_{a} + I_{a}^{G} = P_{a} + I P_{a}^{G} \).

All told we have the change to GDP as

\[
\text{Adj. – Orig. GDP} = \underbrace{P_{a}^{K} K_{a}^{G}}_{\text{ConsumptionChange}} + \underbrace{P_{a} + I_{a}^{G}}_{\text{InvestmentChange}}
\]

and for national income as

\[
\text{Adj. – Orig. NI} = \underbrace{P_{a}^{K} K_{a}^{G}}_{\text{NetReturntoNewAsset}} - \delta P_{a} + K_{a}^{G} - (-Sb_{a})
\]

\[
\underbrace{P_{a} + I_{a}^{G}}_{\text{InvestmentChange}}.
\]

The change in national savings is given by

\[
\text{Adj. – Orig. NS} = \underbrace{P_{a}^{K} K_{a}^{G}}_{\text{NationalIncomeChange}} - \delta P_{a} + K_{a}^{G} + \underbrace{P_{a} + I_{a}^{G}}_{\text{ConsumptionChange}} - \underbrace{(P_{a}^{K} K_{a}^{G})}_{\text{ConsumptionChange}}
\]

\[
= \underbrace{P_{a} + I_{a}^{G}}_{\text{NetInvestmentChange}} - \delta P_{a} + K_{a}^{G}.
\]

For net expenditure, we have of course

\[
\text{Adj. – Orig. NE} = \underbrace{P_{a}^{K} K_{a}^{G}}_{\text{ConsumptionChange}} + \underbrace{P_{a}^{I} I_{a}^{G}}_{\text{NetSavingChange}} - \delta P_{a} + K_{a}^{G}
\]

\[
= \underbrace{P_{a}^{K} K_{a}^{G}}_{\text{NetReturntoNewAsset}} - \delta P_{a} + K_{a}^{G} + \underbrace{P_{a} + I_{a}^{G}}_{\text{InvestmentChange}}.
\]

This scenario provides a sketch of how public sector funds that support the conduct of R&D by for-profit and nonprofit producers might be treated in national accounts after R&D capitalization
ownership of publicly-funded, privately-produced R&D assets is determined to be the public sector. This situation reflects our current understanding of how most countries will treat public R&D spending.\footnote{Note that it is not necessary for NSOs to have previously treated publicly-funded R&D as a subsidy to production for our observations to be valid because the transferred funds would have boosted GOS in reality (and statistically, with allowance for discrepancies) and thereby operated as a subsidy. Note further that if ownership of publicly-funded, privately-conducted R&D is determined to be the private sector, which we understand is the determination for the United Kingdom, then GDP increases by the newly capitalized private own-account R&D investment paid for by the public sector. The public funding is recorded as a production subsidy, and then via (42), capital compensation in the market sector does not change.}

To sum up, when a production subsidy is regarded instead as a purchase of an asset, GDP increases by the gross return to the new asset plus the value of investment in the new asset, and net expenditure increases by the net return to the new asset plus the value of investment in the new asset. Owing to the fact that expenditures previously classified as non-transformative (or nonproduction), are now considered production of a long-lived asset, the results (per unit of spending involved) are rather more dramatic than the two previous cases.

4.3 R&D Gross Output and Performer vs. Funder

The main aggregate used for international comparisons of R&D is gross domestic expenditure on R&D (GERD). This consists of the total expenditure (current and capital) on R&D carried out by all resident companies, research institutes, and university and government laboratories of a country. It includes R&D funded from abroad but excludes domestic funds for R&D performed outside the domestic economy, i.e., it is a performance based metric. Another widely used aggregate is business expenditure on R&D (BERD), where expenditures again are current and capital, and the performance metric (vs. the funder metric) usually holds center stage.

Once R&D is capitalized in national accounts, alternative measures and concepts can be featured. First, R&D gross output measures will be available. As we have seen when comparing government expenditure vs. government gross output, gross output removes capital expenditures and adds capital costs (or capital payments), thereby yielding a output-based metric. Indeed, an output metric might be preferred to a gross expenditure metric in the ever-popular R&D league tables because gross expenditure is biased toward countries that are expanding their R&D facilities from a base of low asset stocks, i.e., it is not a measure of the conduct of R&D. With R&D capitalization in national accounts, output measures (whether value added or gross output) become an alternative source for comparative analyses of the conduct of R&D across countries.
Second, for many (but not all) countries the capitalization of R&D in national accounts will feature series on a funder basis, not a performer basis. Because science policy analysis and the productivity literature (including the literature that focuses on intangible capital) has traditionally used the R&D performer series in analysis and empirical work, estimated trends and relationships may no longer hold when applied to the new national accounts funder-based R&D series.

The performer vs. funder distinction in R&D measures requires additional data no matter what basis is used in national accounts, however. The desideratum for SPINTAN is to have, for each country, a database of public R&D funding by industry consistent with the new national accounts aggregates (and we will also need to know whether public R&D spending is on a performer or funder basis for each country). This will enable a consistent analysis of the links between public funding, private funding, and private vs. public performance (e.g., updating the analysis of Guellec and Van Pottelsberghe De La Potterie, 2003), as well as the generation of alternative productivity baselines as suggested in Corrado, Haskel, Jona-Lasinio, and Iommi (2012, pages 26-7).

Appendix table A4 collects the data desideratum for SPINTAN that arose in the first four sections of the paper.

5 Conclusion

In summary we aim to complete the accounting of intangible investment in a manner that is, broadly speaking, within the current scope of GDP. This will make possible the generation of new empirics on the evolution of productivity and living standards, as well as data for the analysis of public policies supporting their growth.

This paper reviewed the nature of public sector economic activity, how it is measured in national and industry accounts, and how that would change if public intangible assets are capitalized. The analysis concluded that it is necessary to identify the sector’s footprints in both sets of data (i.e., national and industry accounts). Moreover, the readily available data on industry output and inputs (whether at basic prices or with capital compensation that captures the full gross return to capital) do not consistently disaggregate according to institutional unit. This implies that the standard way of assessing the contribution of a given type of economic activity
or factor of production—its share of output or income—is rather a large challenge for SPINTAN as this disaggregation will need to be estimated. An understanding of how real output measurement methods for nonmarket sectors differ across the national statistical offices of the countries analyzed in SPINTAN is also needed.

The next thing we stressed was that detecting social benefits (or spillovers) of government spending policies via growth accounting or econometric analysis requires a database with even more detail than commonly found in industry accounts. Namely, a mapping of each component of government expenditure by FOG (especially subsidies and transfers) to a relevant industry or industries in production accounts is required. All these needs, plus the fact that we need to be able to capitalize assets not now capitalized in national accounts, frame the broad outline of the satellite accounts that need to be in place for SPINTAN’s planned analysis of public intangibles. The particular data and information needs for estimating public intangibles are in a forthcoming SPINTAN background paper.

The overarching framework we set out for SPINTAN’s growth and productivity analysis has three key features: First, the framework covers the total economy in a coherent manner by placing public capital on the same footing as private capital; this requires imputing a real net return to public capital as has long been done in the work of Jorgenson & associates and recently implemented in official total economy productivity measures for the United States. Second, we sketched out a way in which public investments in human capital via schooling can be treated as additions to wealth and saving within the current GDP production boundary; the approach follows the logic used by Ruggles and Moulton to argue that spending on consumer durables is household saving and incorporates elements of the Jorgenson-Fraumeni lifetime-income approach to measuring human capital. Finally, we took some steps to include social welfare into the analysis by following Jorgenson and Landefeld and exploiting information on real net expenditure and real saving in national accounts. As we noted at several points in the main text, capitalization of public intangibles may alter the relative trajectories of the level of living as compared with multifactor productivity, and it will be necessary to compute trends in both measures to obtain a complete picture of economic growth.

As is well know and frequently stated, fiscal policy can be an instrument for growth policy: through its impacts on national saving via the structural budget deficit, through its incentive effects on work, saving and investment via tax rates and tax structure, and through its public
investments in intangible (social, economic, scientific) and tangible (physical) infrastructure. While we should not overstate what fiscal policy can deliver on any of these fronts, we aim in this project to better understand the strength and location of its intangible investment levers.
References

Niebel, T., M. OMahony, and M. Saam (2013). The contribution of intangible assets to sectoral productivity growth in the EU. Discussion Paper No.13-062, ZEW.

Table A1: NACE 2 Intermediate Structure

The table below presents the “intermediate SNA/ISIC aggregation A*38”:

<table>
<thead>
<tr>
<th>A*38 Code</th>
<th>ISIC Rev. 4/ NACE Rev. 2</th>
<th>Divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Agriculture, forestry and fishing 01 to 03</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>Mining and quarrying 05 to 09</td>
</tr>
<tr>
<td>3</td>
<td>CA</td>
<td>Manufacture of food products, beverages and tobacco products 10 to 12</td>
</tr>
<tr>
<td>4</td>
<td>CB</td>
<td>Manufacture of textile, apparel, leather and related products 13 to 15</td>
</tr>
<tr>
<td>5</td>
<td>CC</td>
<td>Manufacture of wood and paper products, and printing 16 to 18</td>
</tr>
<tr>
<td>6</td>
<td>CD</td>
<td>Manufacture of coke, and refined petroleum products 19</td>
</tr>
<tr>
<td>7</td>
<td>CE</td>
<td>Manufacture of chemicals and chemical products 20</td>
</tr>
<tr>
<td>8</td>
<td>CF</td>
<td>Manufacture of pharmaceuticals, medicinal chemical and botanical products 21</td>
</tr>
<tr>
<td>9</td>
<td>CG</td>
<td>Manufacture of rubber and plastics products, and other non-metallic mineral products 22 + 23</td>
</tr>
<tr>
<td>10</td>
<td>CH</td>
<td>Manufacture of basic metals and fabricated metal products, except machinery and equipment 24 + 25</td>
</tr>
<tr>
<td>11</td>
<td>CI</td>
<td>Manufacture of computer, electronic and optical products 26</td>
</tr>
<tr>
<td>12</td>
<td>CJ</td>
<td>Manufacture of electrical equipment 27</td>
</tr>
<tr>
<td>13</td>
<td>CK</td>
<td>Manufacture of machinery and equipment n.e.c. 28</td>
</tr>
<tr>
<td>14</td>
<td>CL</td>
<td>Manufacture of transport equipment 29 + 30</td>
</tr>
<tr>
<td>15</td>
<td>CM</td>
<td>Other manufacturing, and repair and installation of machinery and equipment 31 to 33</td>
</tr>
<tr>
<td>16</td>
<td>D</td>
<td>Electricity, gas, steam and air-conditioning supply 35</td>
</tr>
<tr>
<td>17</td>
<td>E</td>
<td>Water supply, sewerage, waste management and remediation 36 to 39</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>Construction 41 to 43</td>
</tr>
<tr>
<td>19</td>
<td>G</td>
<td>Wholesale and retail trade, repair of motor vehicles and motorcycles 45 to 47</td>
</tr>
<tr>
<td>20</td>
<td>H</td>
<td>Transportation and storage 49 to 53</td>
</tr>
<tr>
<td>21</td>
<td>I</td>
<td>Accommodation and food service activities 55 + 56</td>
</tr>
<tr>
<td>22</td>
<td>JA</td>
<td>Publishing, audiovisual and broadcasting activities 58 to 60</td>
</tr>
<tr>
<td>23</td>
<td>JB</td>
<td>Telecommunications 61</td>
</tr>
<tr>
<td>24</td>
<td>JC</td>
<td>IT and other information services 62 +63</td>
</tr>
<tr>
<td>25</td>
<td>K</td>
<td>Financial and insurance activities 64 to 66</td>
</tr>
<tr>
<td>26</td>
<td>L</td>
<td>Real estate activities* 68</td>
</tr>
<tr>
<td>27</td>
<td>MA</td>
<td>Legal, accounting, management, architecture, engineering, technical testing and analysis activities 69 to 71</td>
</tr>
<tr>
<td>28</td>
<td>MB</td>
<td>Scientific research and development 72</td>
</tr>
<tr>
<td>29</td>
<td>MC</td>
<td>Other professional, scientific and technical activities 73 to 75</td>
</tr>
<tr>
<td>30</td>
<td>N</td>
<td>Administrative and support service activities 77 to 82</td>
</tr>
<tr>
<td>31</td>
<td>O</td>
<td>Public administration and defence, compulsory social security 84</td>
</tr>
<tr>
<td>32</td>
<td>P</td>
<td>Education 85</td>
</tr>
<tr>
<td>33</td>
<td>QA</td>
<td>Human health services 86</td>
</tr>
<tr>
<td>34</td>
<td>QB</td>
<td>Residential care and social work activities 87 + 88</td>
</tr>
<tr>
<td>35</td>
<td>R</td>
<td>Arts, entertainment and recreation 90 to 93</td>
</tr>
<tr>
<td>36</td>
<td>S</td>
<td>Other services 94 to 96</td>
</tr>
<tr>
<td>37</td>
<td>T**</td>
<td>Activities of households as employers; undifferentiated goods- and services-producing activities of households for own use 97 + 98*</td>
</tr>
<tr>
<td>38</td>
<td>U**</td>
<td>Activities of extra-territorial organisations and bodies 99*</td>
</tr>
</tbody>
</table>

* including imputed rents of owner-occupied dwellings
** All of U and part of T (division 98) are outside the SNA production boundary, and will be empty for SNA data reporting, but are included for completeness.
Table A2: Classification of the Purposes of Nonprofit Institutions

- **01** - Housing
 - **01.0** - Housing

- **02** - Health
 - **02.1** - Medical products, appliances and equipment
 - **02.2** - Outpatient services
 - **02.3** - Hospital services
 - **02.4** - Public health services
 - **02.5** - R&D Health
 - **02.6** - Other health services

- **03** - Recreation and culture
 - **03.1** - Recreational and sporting services
 - **03.2** - Cultural services

- **04** - Education
 - **04.1** - Pre-primary and primary education
 - **04.2** - Secondary education
 - **04.3** - Post-secondary non-tertiary education
 - **04.4** - Tertiary education
 - **04.5** - Education not definable by level
 - **04.6** - R&D Education
 - **04.7** - Other educational services

- **05** - Social protection
 - **05.1** - Social protection services
 - **05.2** - R&D Social protection

- **06** - Religion
 - **06.0** - Religion

- **07** - Political parties, labour and professional organizations
 - **07.1** - Services of political parties
 - **07.2** - Services of labour organizations
 - **07.3** - Services of professional organizations

- **08** - Environmental protection
 - **08.1** - Environmental protection services
 - **08.2** - R&D Environmental protection

- **09** - Services n.e.c.
 - **09.1** - Services n.e.c.
 - **09.2** - R&D Services n.e.c.

<table>
<thead>
<tr>
<th>Type or Sub-type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Business information</td>
</tr>
<tr>
<td>1.1 Chamber of Commerce information</td>
</tr>
<tr>
<td>1.2 Official business registers</td>
</tr>
<tr>
<td>1.3 Patent & trademark information</td>
</tr>
<tr>
<td>1.4 Public tender databases</td>
</tr>
<tr>
<td>2 Geographic information</td>
</tr>
<tr>
<td>2.1 Address information</td>
</tr>
<tr>
<td>2.2 Aerial photos</td>
</tr>
<tr>
<td>2.3 Buildings</td>
</tr>
<tr>
<td>2.4 Cadastral information</td>
</tr>
<tr>
<td>2.5 Geodetic networks</td>
</tr>
<tr>
<td>2.6 Geology</td>
</tr>
<tr>
<td>2.7 Hydrographical data</td>
</tr>
<tr>
<td>2.8 Topographic information</td>
</tr>
<tr>
<td>3 Legal information</td>
</tr>
<tr>
<td>3.1 Decisions of international and foreign courts</td>
</tr>
<tr>
<td>3.2 Decisions of national courts</td>
</tr>
<tr>
<td>3.3 National legislation</td>
</tr>
<tr>
<td>3.4 Treaties</td>
</tr>
<tr>
<td>4 Meteorological information</td>
</tr>
<tr>
<td>4.1 Climatological data (including models)</td>
</tr>
<tr>
<td>4.2 Weather forecasts</td>
</tr>
<tr>
<td>5 Social data</td>
</tr>
<tr>
<td>5.1 Economic statistics</td>
</tr>
<tr>
<td>5.2 Employment statistics</td>
</tr>
<tr>
<td>5.3 Health statistics</td>
</tr>
<tr>
<td>5.4 Population statistics</td>
</tr>
<tr>
<td>5.5 Public administration statistics</td>
</tr>
<tr>
<td>5.6 Social statistics</td>
</tr>
<tr>
<td>6 Transport information</td>
</tr>
<tr>
<td>6.1 Information on traffic congestion</td>
</tr>
<tr>
<td>6.2 Information on work on roads</td>
</tr>
<tr>
<td>6.3 Public transport information</td>
</tr>
<tr>
<td>6.4 Vehicle registration</td>
</tr>
</tbody>
</table>

Source—Dekkers, Polman, te Velde, and de Vries (2006).
<table>
<thead>
<tr>
<th></th>
<th>SPINTAN Data Desideratum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Nonmarket output measurement methods in SPINTAN topic areas by country</td>
</tr>
<tr>
<td>2.</td>
<td>Industry detail for NACE 72, and possibly 90–91 vs 92–93 in Section R</td>
</tr>
<tr>
<td>3.</td>
<td>Mapping of FOGs to NACE industries</td>
</tr>
<tr>
<td>a.</td>
<td>Final consumption</td>
</tr>
<tr>
<td>b.</td>
<td>Final investment</td>
</tr>
<tr>
<td>c.</td>
<td>Investment grants</td>
</tr>
<tr>
<td>d.</td>
<td>Subsidies</td>
</tr>
<tr>
<td>4.</td>
<td>Capital compensation by industry including subsidies and relevant transfers</td>
</tr>
<tr>
<td>5.</td>
<td>Disaggregation of industry data by institutional sector in our topic areas</td>
</tr>
<tr>
<td>a.</td>
<td>Value added and major components</td>
</tr>
<tr>
<td>b.</td>
<td>Employment and investment by asset type</td>
</tr>
<tr>
<td>6.</td>
<td>Estimates of E and PES from JF-style human capital accounts</td>
</tr>
<tr>
<td>7.</td>
<td>Estimates of the real net return to nonmarket capital</td>
</tr>
<tr>
<td>8.</td>
<td>Public R&D spending by industry</td>
</tr>
<tr>
<td>9.</td>
<td>Ownership of R&D output funded by the public sector, criteria by SPINTAN country</td>
</tr>
</tbody>
</table>

Source—This paper.