
Complementarity and Substitutability between Tangible and Intangible Capital: Evidence from Japanese Firm-level Data

> Kaoru Hosono (Gakushuin University/RIETI) Daisuke Miyakawa (Hitotsubashi University) Miho Takizawa (Toyo University) Kenta Yamanouchi (Keio University/MERI)

Motivation: Intangible capital plays an important role in production and investment.

The market sector occupies a dominant share of intangible capital investment.

What we aim at:

- There seems a relation between tangible and intangible capital in production and investment.
- However, to our view, the literature does not fully explore the relation between tangible and intangible capital in production and investment.
- We analyze the complementarity and substitutability of tangible and intangible capital in production and investment in the market sector.
- The market sector includes private and non-profit organizations in medical, education, and waste disposal services.

Related literature: Theoretical models

(1) Growth and business cycles with intangible capital in general.
 (McGrattan and Prescott, 2010a, b; Malik et al., 2014; De 2014).
 ⇒ Cobb-Douglas production function is often a priori assumed.

- (2) Growth and business cycles with some specific intangible capital.
- ✓ Knowledge capital (Romer, 1990; Jones, 1995; Klette and Kortum, 2004).
- ✓ Organizational capital (Atkeson and Kehoe, 2005; Luttmer, 2007, 2011).
- ✓ Customer capital (Gourio and Rudanko, 2014a,b)
- \Rightarrow Intangible capital is only partially captured.

Related literature: Empirical analyses

(3) Empirical analyses of production functions with intangible capital

- \Rightarrow Firm-level analyses are scarce.
- \Rightarrow Cobb-Douglas functions

(De and Dutta, 2007; Verbič and Polanec, 2014).

Interaction between IT capital and organizational/human capital (Breshnahan et al., 2002; Bugamelli and Pagano, 2003; Biagi

and Parisi, 2012; Bloom et al., 2012)

⇒ Interaction (Complementarity/Substitutability) between tangible and intangible capitals has not been accounted for yet.

Although preceding studies focus on private sectors, interaction between tangible and intangible capitals has not been analyzed in the public sector as well.

Related literature: Empirical analyses (cnt'd)

(4) Empirical analyses of the relationship between tangible and intangible capital investment,

- Tobin's Q type of tangible capital investment (Bond and Cummins, 2000; Brynjolfsson et al., 2002; Takizawa, 2015)
- ✓ VAR with tangible capital and R&D investment
 (Lach and Schankerman, 1989; Lach and Rob, 1996; and Chiao, 2001)
- ✓ Intangible capital investment with both types of capital (Arrighetti et al., 2014)

⇒ They do not associate investment function with the production technology (i.e., complementarity/substitutability of tangible and intangible capital)

What we do:

- We analyze the complementarity and substitutability of tangible and intangible capital in production and investment.
- To this end, we
 - <u>Construct</u> a large dataset of Japanese firms including firm-level information on major intangible capitals: software, R&D, advertisement, spanning 2000-2013. (These three types account for about 70% of intangible capital: JIP 2015),
 - <u>Estimate</u> an industry-level production function taking into account the complementarity/substitutability of tangible and intangible capitals, and
 - <u>Estimate</u> an investment function to examine how the complementarity/substitutability in production accounts for the relation between tangible capital investment and intangible capital investment.

What we find:

- 1. Substantial <u>heterogeneity among industries</u> in terms of substitutability and complementarity between tangible and intangible capital.
- 2. For example, these two types of capital are complementary for medical sector, while they are substitute for waste disposal sector.
- 3. The estimated relation between tangible and intangible capital in production function accounts for the relation between tangible capital investment and intangible capital investment.

Composition

- 1. Introduction
- 2. Literature
- 3. Data
- 4. Methodology
- 5. Results: production
- 6. Results: investment
- 7. Conclusion

Data: source and coverage

- Source: The Basic Survey of Japanese Business Structure and Activities (BSJBSA) published by the METI.
- Sample:
 - BSJBSA covers the universe of enterprises in Japan with more than 50 employees and with paid-up capital of over 30 million yen.
 - Use data for 1994-2013 to construct intangible capital stock using the perpetual inventory (PI) method.
 - Use data for 2000-2013 to estimate production functions and data for 2000-2012 to estimate investment functions.
 - Drop firm-year observations with intangible capital=0 (0.6% of total number of observations).

Data: categories of intangible capital

Corrado et al. (2009)

- computerized information
- innovative property
- economic competencies

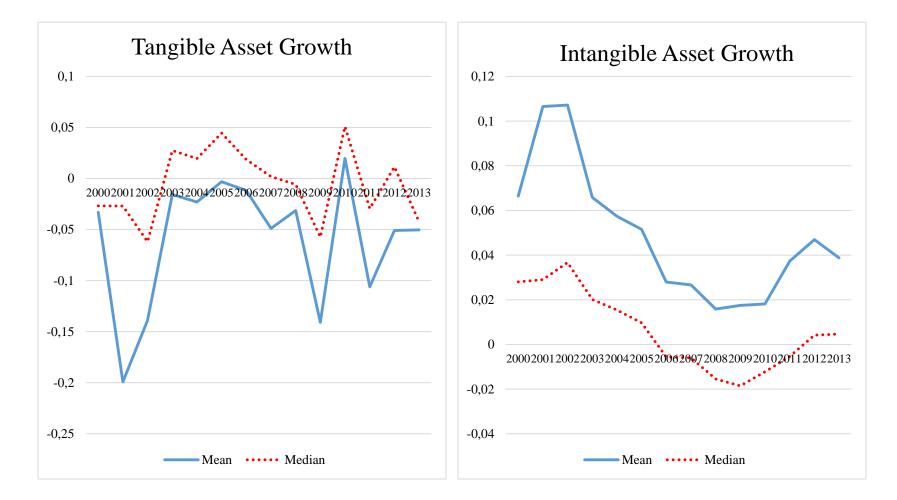
<u>This paper</u>

- -- software
- -- R&D stock
- -- brand (advertisement)

• Software, R&D stock and brand accounts for about 70% of total intangible capital in Japan (JIP 2015).

Data: construction of intangible capital

- We follow Miyagawa et al. (2013).
- The following flow values are deflated and accumulated via PI method to construct stock values.
- (1) Software (# of workers engaging in information processing/# of total workers) × total payroll + cost of information processing
- (2) R&D (excluding capital expenditures for R&D)
- (3) Advertisement
- Depreciation rates: 31.5%, 15% and 55% for software, R&D, and brand (advertisement):
 - -- Sources: Corrado et al. (2009) and Miyagawa et al. (2013)


Industry classification (JIP 2015)

sif Sector Name	JIP Classif Sector Name
1 Rice, wheat production	50 Electronic equipment and electric measuring instruments
2 Miscellaneous crop farming	51 Semiconductor devices and integrated circuits
3 Livestock and sericulture farming	52 Electronic parts
4 Agricultural services	53 Miscellaneous electrical machinery equipment
5 Forestry	54 Motor vehicles
6 Fisheries	55 Motor vehicle parts and accessories
7 Mining	56 Other transportation equipment
8 Livestock products	57 Precision machinery & equipment
9 Seafood products	58 Plastic products
10 Flour and grain mill products	59 Miscellaneous manufacturing industries
11 Miscellaneous foods and related products	60 Construction
12 Prepared animal foods and organic fertilizers	61 Civil engineering
13 Beverages	62 Electricity
14 Tobacco	63 Gas, heat supply
15 Textile products	64 Waterworks
16 Lumber and wood products	65 Water supply for industrial use
17 Furniture and fixtures	66 Waste disposal
18 Pulp, paper, and coated and glazed paper	67 Wholesale
19 Paper products	68 Retail
1 1	
20 Printing, plate making for printing and bookbinding	69 Finance
21 Leather and leather products	70 Insurance
22 Rubber products	71 Real estate
23 Chemical fertilizers	72 Housing
24 Basic inorganic chemicals	73 Railway
25 Basic organic chemicals	74 Road transportation
26 Organic chemicals	75 Water transportation
27 Chemical fibers	76 Air transportation
28 Miscellaneous chemical products	77 Other transportation and packing
29 Pharmaceutical products	78 Telegraph and telephone
30 Petroleum products	79 Mail
31 Coal products	80 Education (private and non-profit)
32 Glass and its products	81 Research (private)
33 Cement and its products	82 Medical (private)
34 Pottery	83 Hygiene (private and non-profit)
35 Miscellaneous ceramic, stone and clay products	84 Other public services
36 Pig iron and crude steel	85 Advertising
37 Miscellaneous iron and steel	86 Rental of office equipment and goods
38 Smelting and refining of non-ferrous metals	87 Automobile maintenance services
39 Non-ferrous metal products	88 Other services for businesses
40 Fabricated constructional and architectural metal products	89 Entertainment
41 Miscellaneous fabricated metal products	90 Broadcasting
42 General industry machinery	90 Broadcasting 91 Information services and internet-based services
43 Special industry machinery	92 Publishing
44 Miscellaneous machinery	
•	93 Video picture, sound information, character information production and distribution
45 Office and service industry machines	94 Eating and drinking places
46 Electrical generating, transmission, distribution and industrial apparatus	95 Accommodation
47 Household electric appliances	96 Laundry, beauty and bath services
48 Electronic data processing machines, digital and analog computer equipment and accessories	97 Other services for individuals 14
49 Communication equipment	

Sample statistics

Variable	Mean	Median	Std. Dev	Minimum	Maximum	Observations
LN(Ktan)	6.002	6.018	1.837	-3.040	14.839	333,743
LN(Kintan)	5.117	4.952	1.979	-9.009	15.286	333,743
Δ LN(Ktan)	-0.060	-0.006	0.651	-8.139	7.768	333,743
Δ LN(Kintan)	0.048	0.005	0.289	-0.799	9.094	333,743
$\Delta LN(TFP)_{IND}$	0.004	0.004	0.044	-0.276	0.351	307,760
$\Delta LN(TFP)_{Residual}$	0.012	0.010	0.596	-9.787	9.046	333,743
LN(Value added)	7.099	6.878	1.288	-1.006	15.870	333,743
LN(Labor)	5.218	4.981	1.026	3.752	11.830	333,743
Value added	5513.124	970.498	56950.020	0	7800530	333,743
Labor	441.631	145.575	1773.663	42.593	137323	333,743
Ktan	3159.651	410.654	27390.080	0.048	2782125	333,743
Kintan	3051.951	141.389	44697.670	0.000	4351219	333,743

Growth rates of tangible and intangible capitals

Method: production function

$$\begin{split} LN(Y)_{i,t} &= \beta_l LN(L)_{i,t} + \beta_{ktan} LN(Ktan)_{i,t} \\ &+ \beta_{kintan} LN(Kintan)_{i,t} \\ + \beta_{tan \times intan} LN(Ktan)_{i,t} \times LN(Kintan)_{i,t} \\ + \eta_i + year_t + \omega_{i,t} + \varepsilon_{i,t} \quad (\text{production function}) \end{split}$$

 $\omega_{i,t} = \rho \omega_{i,t-1} + \xi_{i,t} \qquad (productivity shock)$

- Cobb-Douglas production function augmented by the interaction of LN(Ktan) and LN(Kintan).
- Complementarity/substitutability is captured by $\beta_{tan \times intan}$.
- Firm fixed effects and year dummies

Estimation

Dynamic (common factor) presentation $LN(Y)_{i,t} = \beta_l LN(L)_{i,t} - \rho \beta_l LN(L)_{i,t-1} + \beta_{ktan} LN(Ktan)_{i,t}$ $-\rho\beta_{ktan}LN(Ktan)_{i,t-1}$ $+\beta_{kintan}LN(Kintan)_{i,t}$ $-\rho\beta_{kintan}LN(Kintan)_{it-1} + \beta_{tan\times intan}LN(Ktan)_{it}$ $\times LN(Kintan)_{i,t} - \rho \beta_{tan \times intan} LN(Ktan)_{i,t-1} \times LN(Kintan)_{i,t-1}$ $+\rho LN(Y)_{i,t-1}+\eta_i(1-\rho)+year_t-\rho year_{t-1}+\xi_{i,t}+\varepsilon_{i,t}$ (4) $-\rho \varepsilon_{i\,t-1}$ or $LN(Y)_{i,t} = \pi_1 LN(L)_{i,t} + \pi_2 LN(L)_{i,t-1} + \pi_3 LN(Ktan)_{i,t} + \pi_4 LN(Ktan)_{i,t-1}$ $+\pi_5 LN(Kintan)_{i,t} + \pi_6 LN(Kintan)_{i,t-1}$ $+\pi_7 LN(Ktan)_{i,t} \times LN(Kintan)_{i,t} + \pi_8 LN(Ktan)_{i,t-1}$ $+\pi_{9}LN(Y)_{i,t-1}+\eta_{i}^{*}+year_{t}^{*}$ $\times LN(Kintan)_{i,t-1}$ (5) $+ \omega_{it}$

Where $\pi_2 = -\pi_1 \pi_9$, $\pi_4 = -\pi_3 \pi_9$, $\pi_6 = -\pi_5 \pi_9$, $\pi_8 = -\pi_7 \pi_9$.

Estimation Procedure 1

1. We first obtain consistent estimates of the unrestricted parameter $\pi = (\pi_1, , , \pi_9)$ and $var(\pi)$, using the system GMM (Blundell and Bond, 1998).

$$E(x_{i,t-s}\Delta\omega_{i,t}) = 0$$
(6)
and
$$E(A_{i,t-s}\Delta\omega_{i,t}) = 0$$
(7)

$$E(\Delta x_{i,t-s}(\eta_i^* + \omega_{i,t})) = 0$$
(7)
where

 $\begin{aligned} x_{i,t} &= \\ (LN(L)_{i,t}, LN(Ktan)_{i,t}, LN(Kintan)_{i,t}, LN(Ktan)_{i,t} \times LN(Kintan)_{i,t} \\ \text{and } s \geq 3. \end{aligned}$

Estimation Procedure 2

2. Using consistent estimates of the unrestricted parameters and their variance-covariance matrix, we impose the above restrictions by minimum distance to obtain the restricted parameter vector (β_l , β_{ktan} , β_{kintan} , $\beta_{tan \times intan}$, ρ).

Method: Definition of Complementarity /Substitutability

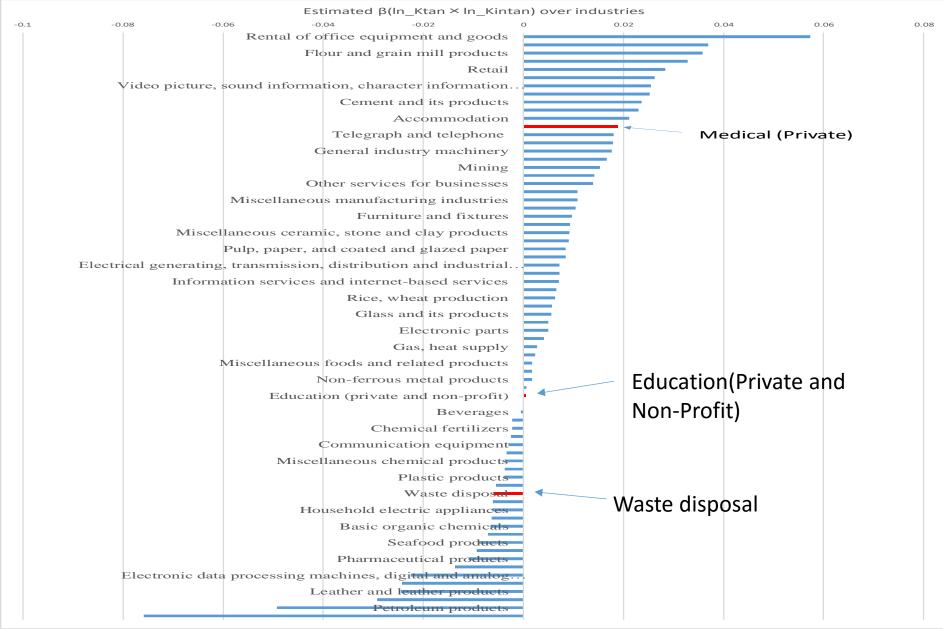
Ktan and Kintan are substitute if $\delta(LN(Ktan))/\delta(Rintan) > 0$ complementary if $\delta(LN(Ktan))/\delta(Rintan) < 0$

complementary if
substitute $\frac{\partial^2 F(Ktan,Kintan,L)}{\partial Ktan\partial Kintan} > 0$

- Complementary if $\beta_{tan \times intan}(IND)$ is either positive or negative with a sufficiently small absolute value.
- We call $\beta_{tan \times intan}(IND)$ the "complementarity coefficient" below.

Methodology: Investment function

• Simple form of structural equations


 $dK \tan_{i,t} = \frac{\partial K \tan}{\partial \omega} d\omega_{i,t-1} + \frac{\partial K \tan}{\partial R \tan} dR \tan_{i,t-1} + \frac{\partial K_{\tan}}{\partial R_{int\,an}} dR \operatorname{int} an_{i,t-1}$ $dK \operatorname{int} an_{i,t} = \frac{\partial K \operatorname{int} an}{\partial \omega} d\omega_{i,t-1} + \frac{\partial K \tan}{\partial R \tan} dR \tan_{i,t-1} + \frac{\partial K \tan}{\partial R \operatorname{int} an} dR \operatorname{int} an_{i,t-1}$

- Rental rates of intangible capital are difficult to observe and likely to vary across firms and over time.
- We substitute intangible capital investment into the rental rate of intangible capital of the tangible capital investment equation to obtain reduced form.
- The relationship between tangible capital investment and intangible capital investment should depend on the complementarity/substitutability captured by $\beta_{tan \times intan}$.

Method: Production and Investment

- $\Delta LN(Ktan)_{i,t} = \gamma_{intan} \Delta LN(Kintan)_{i,t}$ + $\gamma_{intan \times \beta} \Delta LN(Kintan)_{i,t} \times \beta_{tan \times intan}(IND_i) + \delta \Delta LN(TFP)_{i,t}$ + $\eta_i + year_t + \varepsilon_{i,t}$
- *TFP* is measured either at the firm level or industry level.
- $\gamma_{intan \times \beta} > 0$ is expected.
- $Rintan \downarrow \Rightarrow$ Ktan \uparrow if complementary
 - Ktan \downarrow if substitute
 - \Rightarrow Kintan \uparrow

Results from production functions: Estimated coefficients for $LN(Ktan)_{i,t} \times LN(Kintan)_{i,t}$ vary over industries

How are the complementarity/substitutability associated with industry characteristics?

• The degree of complementarity tends to be higher as the average firm size is smaller and the industry size is larger.

	Coefficient	Standar error	t-value
IndustrySize	0.003 *	0.002	1.930
AverageFirmSize	-0.004 *	0.002	-1.680
const	-0.008	0.017	-0.450
Number of obs	70		
F(2,67)	1.950		
Prob > F	0.151		
Adj R-sq:	0.027		
Root MSE	0.019		

Dependent Variable: $\beta(\ln Ktan \times \ln Kintan)$

Results: Investment function

	Coefficient	Standar error	t-value	
Δ LN(Kintan)	-0.314 *	** 0.005	-65.770	
$\Delta LN(Kintan) \times \beta_{tan \times intan}(IND_i)$	1.172 *	** 0.257	4.560	
$\Delta LN(TFP)_{IND}$	0.366 *	** 0.031	11.860	
Constant	0.080 *	** 0.004	19.410	
Year dummy	Yes			
Number of obs	318247			
F(15,274642)	638.250			
Prob > F	0.000			
R-sq:				
within	0.034			
between	0.083			
overall	0.038			
$\beta_{tan \times intan}(IND_i)$ accounts	for the jo	int dynamics	of tangible	an
intangible capitals.				

Dependent Variable: Δ LN(Ktan)

Quantitatively, however, even with relatively high $\beta_{tan \times intan}(IND_i)$ (e.g., around 0.045 for special industry machinery) the overall marginal effect associated with $\Delta LN(Kintan)_{i,t}$ is still negative.

Results: Investment function

• Replacing the industry-level TFP with firm-level TFP yields a similar result.

	Coefficient	Standar error	t-value
			t-value
$\Delta LN(Kintan)$	-0.315 **	** 0.005	-67.830
$\Delta LN(Kintan) \times \beta_{tan \times intan}(IND_i)$	0.901 **	** 0.248	3.630
$\Delta LN(TFP)$	0.009 **	** 0.002	4.750
Constant	0.053 **	** 0.004	13.040
Year dummy	Yes		
Number of obs	333743		
F(15,294014)	43678.000		
Prob > F	0.000		
R-sq:			
within	0.032		
between	0.103		
overall	0.037		

Dependent Variable: Δ LN(Ktan)

Why is tangible capital investment negatively associated with intangible capital investment? – Financial constraints?

Small firms

Large firms

Dependent Variable: ΔLN(Ktan)				Dependent Variable: ΔLN(Ktan)			
Large firms	Coefficient	Standar error	t-value	Small firms	Coefficient	Standar error	t-value
Δ LN(Kintan)	-0.262 **	* 0.007	-37.980	ΔLN(Kintan)	-0.331 **	** 0.007	-50.550
$\Delta LN(Kintan) \times \beta_{tan \times intan}(IND_i)$	-0.362	0.310	-1.170	$\Delta LN(Kintan) \times \beta_{tan \times intan}(IND_i)$	2.849 **	** 0.398	7.150
$\Delta LN(TFP)_{IND}$	0.293 **	** 0.035	8.350	ΔLN(TFP) _{IND}	0.325 **	** 0.050	6.450
Constant	0.080 **	** 0.005	16.580	Constant	0.070 **	** 0.007	10.650
Year dummy	Yes			Year dummy	Yes		
Number of obs	158766			Number of obs	159481		
F(15,134629)	215.190			F(15,130201)	434.280		
Prob > F	0.000			Prob > F	0.000		
R-sq:				R-sq:			
within	0.023			within	0.048		
between	0.073			between	0.019		
overall	0.030			overall	0.037		

Except for the industries with very high $\beta_{tan \times intan}(IND_i)$, increase in the intangible capital lead to larger reduction in tangible capital in the case of small firms, which is consistent with the financial constraint hypothesis.

Why is tangible capital investment negatively associated with intangible capital investment? – Financial constraints?

Large firms

Small firms

Dependent Variable: ΔLN(Ktan)				Dependent Variable: ΔLN(Ktan)			
Large firms	Coefficient St	andar error	t-value	Small firms	Coefficient	Standar error	t-value
ΔLN(Kintan)	-0.262 ***	0.007	-39.450	ΔLN(Kintan)	-0.332 **	** 0.006	-51.610
$\Delta LN(Kintan) \times \beta_{tan \times intan}(IND_i)$	-0.426	0.298	-1.430	$\Delta LN(Kintan) \times \beta_{tan \times intan}(IND_i)$	2.407 **	** 0.387	6.230
$\Delta LN(TFP)$	0.001	0.002	0.570	ΔLN(TFP)	0.000	0.003	-0.090
Constant	0.040 ***	0.005	8.280	Constant	0.059 **	** 0.007	8.960
Year dummy	Yes			Year dummy	Yes		
Number of obs	168557			Number of obs	165186		
F(15,145461)	200.410			F(15,233743)	404.830		
Prob > F	0.000			Prob > F	0.000		
R-sq:				R-sq:			
within	0.022			within	0.046		
between	0.075			between	0.028		
overall	0.028			overall	0.038		

Replacing industry-level TFP with firm-level TFP yields a similar result.

Summary

Using a unique dataset of Japanese firms including firm-level information on major intangible capitals, we find

- Substantial heterogeneity among industries in terms of substitutability and complementarity between tangible and intangible capital.
- (2) For example, these two types of capital are complementary for medical sector, while they are substitute for waste disposal sector.
- (3) The estimated relation between tangible and intangible capital in production function accounts for the relation between tangible capital investment and intangible capital investment.

Policy implications

- The <u>effects of such a policy</u> as exclusively targeting one type of capital (e.g., tax credit for tangible capital investment or subsidy for R&D) <u>vary over industries</u>.
- Policies favoring one production factor might <u>enhance</u> the production if tangible and intangible capitals are complementary, while subsidies for intangible capital investment may severely <u>reduce</u> tangible capital investment in the case that these two inputs are substitute.
- It is necessary to take into account the <u>detailed mechanism</u> of production for disaggregated group (e.g., industry) for designing effective policy measures as well as evaluating the outcomes of policy measures.