ESTIMATING INVESTMENT IN TRAINING USING PIAAC DATA

Mariagrazia Squicciarini, Luca Marcolin, Peter Horvát OECD Directorate for Science, Technology and Innovation Economic Analysis and Statistics Division

PRELIMINARY AND INCOMPLETE -

SPINTAN meeting, London, 23-24 April 2015

Training: upgrading human capital

.... And adapting workforce to technological change.

Source: O'Mahony (2012)

- Training as investment in human capital.
- KBC approach:
 - Expenditure based;
 - Both opportunity cost and direct cost;
 - Goes beyond vocational training, and extends to formal and informal forms of training.
- Exploits survey-based micro-data and links to official sources (e.g. LFS) and to SNA:
 - PIAAC, Uniform methodology for 22 countries, with info about occupations, industry and skills.
 - Employment by occupation (LFS) and structural (SNA) data.

- Preliminary evidence provided:
 - 22 countries, average 2011-2012
 - Can get estimates of non-formal for > countries.
 - Non-formal only 40% of total investment in training.
 - Industry/country heterogeneity, but some patterns emerge:
 - Importance of formal education in subset of countries
 - Manufacturing vs services intensive countries ?
 - » Production more intensive in non-formal training than services, but not of business services only.
 - » Public services more intensive in formal training.
 - Coherent with previous estimates

- Investment in training – no capitalization at present

Types of training considered

- Different types of training;
 - <u>Formal</u>: organised, outside work, yields certificate.
 - <u>Informal</u>: unstructured. Learning from peers, learning by doing.
 - <u>Non-formal</u>: organised, without certificate, both in- or outside work.
- Not perfectly overlapping with previous definitions (CEDEFOP 2014, Werquin 2007, O'Mahony 2012).
- Not necessarily "on the job" (formal), but in employment.
- Types can coexist. Overlapping.

- Expenditure-based = hourly cost of training*incidence
- <u>General vs. firm-specific training</u>. Perfect labour markets?
 - Workers can be asked to pay for general training if unemployment, or employer pays if limited worker mobility.
- Who benefits from training? <u>Revealed preferences</u>: fraction of expenditure into investment determined by:
 - Who finances the training (employer, employee, both).
 - When training takes place (during working hours? Yes, no, in part)
 - Self-reported usefulness of training wrt current occupation.

Previous estimating methodologies (industry):

- Corrado et al. (2014):

 $\left(\frac{Cost of training courses (CVTS)}{total \, labour \, cost} \right) * (employee \, compensations \, (NA)) + \\ \left(\frac{apprentices \, cost}{total \, labour \, cost} \right) * (employee \, compensations \, (NA))$

– Miyagawa & Hisa (2013): from Ooki (2003), opportunity cost / off-the-job training cost = 1.51

 $\left(\frac{Cost of f the job training}{total labour cost}(survey)\right) * (2.51)$

- O'Mahony (2012): CVT Survey

 $\left(\frac{\text{Direct cost of training}}{\text{Opportunity cost of training}}\right) * (avg compensation (EUKLEMS)) +$

(# trained employees by type & industry
total # employees by type & industry) * (wage by type & industry)

$$I^{N} = \sum_{k,o,j} (p_{k,o,j} h_{k,o,j}^{N} w_{k,o,j} + q_{k,o,j} h_{k,o,j}^{N} C_{j}^{N})$$

Opportunity Cost
Direct Cost

 $p_{k,o,j}$: weight. "Subjective usefulness" (1= very useful) \cap "proportion of training in working hours" (1=only during working hours)

Allocation \rightarrow		N	0	
Subjective Usefulness ↓	N	0.667	0.333	0
1	d'r	0.833	0.667	0.5
0.667	0.833	0.667	0.5	0.333
0.333	0.667	0.5	0.333	0.167
0	0.5	0.333	0.167	0

Intuition: revealed preferences approach. If training paid for or during working hours -> more likely to be investment. However, no 0 value if not:

- Usefulness for worker vs for employer
- Employer can pressure employee in bad cycles, or workers can decide to solve his own mismatch.

$$I^{N} = \sum_{k,o,j} (p_{k,o,j} h_{k,o,j}^{N} w_{k,o,j} + q_{k,o,j} h_{k,o,j}^{N} C_{j}^{N})$$

$$\underbrace{\text{Direct Cost}}$$

- $q_{k,o,j}$: weight. "Subjective usefulness" \cap "proportion of training paid by employer" (1=totality).
- *C^N_j*: from Continuing Vocational Training Survey
 - Clustering for non-EU countries.
 - Market services used for non-market ones.
 - Account for firm size, correct for CVTS sampling.

- $\frac{C_e}{S_e}$: public & private expenditure per student by ISCED97 category, in PPS (OECD). This is what is paid to participate in formal education.
- $q_{k,e,o,j}$: computed by education level of individuals.
- *h_{k,o,j}*: annual hours worked, from data restriction => assume entire work time devoted to training, proportionally to *p* (subjective usefulness).

AND NCOMPLETE PRELIMINARY AND QUOTE OR CITE Three concepts involved in PIAAC: "peer learning", "learning" by doing", "knowledge updating"

- Three concepts involved in PIAAC: "peer learning", "learning by doing", "knowledge updating".
 - PIAAC expresses in days. Double for peer learning.
 - Not mutually exclusive activities in the same time unit =>
 - Upper bound $(\overline{d}_{k,o,j})$: sum of days spent in all three activities.
 - Lower bound $(\underline{d}_{k,o,i})$: days having some peer learning. $I^{IN} = \{\underline{I}^{IN} ; \overline{I}^{IN}\} = \{\sum_{k,o,j} (\underline{d}_{k,o,i}); \sum_{k,o,j} (\overline{d}_{k,o,j})\}$

Lower bound

- Three concepts involved in PIAAC: "peer learning", "learning by doing", "knowledge updating", expressed in days.
 - Double for peer learning.
 - Not mutually exclusive activities in the same time unit $= \ge$
 - Upper bound $(\bar{d}_{k,o,j})$: sum of days spent in all three activities.
 - Lower bound $(\underline{d}_{k,o,i})$: days having some peer learning.
 - From existing studies, obtain number of hours of training per day.
 - In the 90s: conservative approach
 - Average data for JP and U.S. . Employee's tenure >/< 1 year.

$$I^{IN} = \{\underline{I}^{IN} ; \overline{I}^{IN}\} = \{\underline{\Sigma}_{k,o,j}(\underline{d}_{k,o,j} Z_{k,o,j}); \underline{\Sigma}_{k,o,j}(\overline{d}_{k,o,j} Z_{k,o,j})\}$$

- Three concepts involved in PIAAC: "peer learning", "learning by doing", "knowledge updating", expressed in days.
 - Double for peer learning.
 - Not mutually exclusive activities in the same time unit =>
 - Upper bound $(\overline{d}_{k,o,j})$: sum of days spent in all three activities.
 - Lower bound $(\underline{d}_{k,o,i})$: days having some peer learning.
 - From existing studies, obtain number of hours of training per day.
 - In the 90s: conservative approach
 - Average data for JP and U.S. . Employee's tenure >/< 1 year.

 $I^{IN} = \{\underline{I}^{IN} ; \overline{I}^{IN}\} = \{\underline{I}^{IN} ; \overline{L}^{IN}\} = \{\underline{I}^{IN} ; \overline{L}^{IN}\} = \{\underline{I}^{IN} ; \sum_{k,o,j} (\overline{d}_{k,o,j} z_{k,o,j} w_{k,o,j}) \}$

 $z_{k,o,j} =$ {30m: 15m}

- Uniform questionnaire.
- Cross-country: not only EU. Recent (vs U.S. and Japan).
- Information on various types of training.
- Usefulness and repartition of costs of training between employer and employee
- Both occupational and industry dimension (vs countrywide).
- Not LEED.

- Direct input:
 - Education at a Glance the incidence of attained education, direct cost of formal training.
 - Continuous Vocational Training Survey- direct cost of non-formal training.
- For calibration:
 - LFS-like surveys (gender by age structure, employment related infoparticipation rates, full-time and part-time related, etc.).
 - SNA- especially wages and salaries, industry structure-related information (e.g. employment by sector), GDP per capita, PPP.

Recalibrate weights to align with SNA data

GREG estimators minimize the deviation between the vector of original sampling weights (inverse value of a selection probability) and the calibrated weights using a linear regression model to fit the marginal totals of control variables.

• Outliers + adjustment by PPP.

Incidence of training by type of training and skill level, (% of total employment , Avg 2011-2012)

Driven by industry composition? Services more high skilled among the trained ones (ICT, finance, education, not retail/hotel).

Estimates of Investment (1)

Investment in training as % GVA						
	Non-formal	Total		Non-formal	Total	
Australia	3.37%	11.22%	Italy	1.06%	3.03%	
Austria	2.63%	5.36%	Japan	2.28%	3.64%	
Belgium	1.65%	4.86%	Korea	3.25%	4.76%	
Canada	3.21%	9.75%	Netherlands	3.21%	10.06%	
Czech Rep.	1.59%	3.88%	Norway	1.97%	8.13%	
Denmark	2.93%	10.99%	Poland	1.91%	4.56%	
Estonia	1.74%	5.89%	Slovak Rep.	1.41%	3.76%	
Finland	2.46%	8.67%	Spain	2.56%	6.41%	
France	1.36%	3.87%	Sweden	2.76%	6.54%	
Germany	2.66%	5.12%	UK	2.84%	9.73%	
Ireland	2.18%	7.29%	USA	3.12%	8.23%	

- Median: non-formal: 2.51%, formal: 2.58%, informal: 1.04%, Total: 6.15%
- Two "models", for total? 4-5% vs 9-10%
- But not for non-formal (< dispersed than total and all others)

Investment in non formal training as % output: comparison with previous studies

			Non-formal based on				
	O'Mahony (2012)		Corrado et al. (2014)		PIAAC		
				- NPL			
	Total	Production	Total	Production	Total	Production	
DEU	1.3%	0.9%	1.4%	1.5%	2.7%	2.2%	
DNK	4.2%	3.1%	2.3%	1.6%	2.9%	2.0%	
FRA	1.5%	1.5%	1.6%	1.3%	1.4%	1.8%	
IRL	0.6%	0.2%	1.8%	4.7%	2.2%	1.2%	
ITA	0.3%	0.2%	0.9%	0.8%	1.1%	1.0%	
NLD	2.5%	1.4%	1.4%	1.0%	3.2%	2.0%	

• No clear direction in "bias" wrt previous estimates

• Not all same denominator across studies

Investment in training by type and industry

- Ad-hoc choices:
 - Misclassification of individuals between work and study
 => ROBUSTNESS: use subjective status. Apprenticeship.
 - Weights based on allocation, usefulness, employer's quota questions.
 => ROBUSTNESS: recalculate *p* and *q* with different weights.
 - Informal training: for hours/day, no industry/country specific data available (but for JP, NL and US); when available, different years.
 => ALTERNATIVES?

Possible issues to address

- Ad-hoc choices:
 - Misclassification of individuals between work and study
 => ROBUSTNESS: use subjective status. Apprenticeship.
 - Weights based on allocation, usefulness, employer's quota questions.
 => ROBUSTNESS: recalculate *p* and *q* with different weights.
 - Informal training: for hours/day, no industry/country specific data available (but for JP, NL and US); when available, different years.
 => ALTERNATIVES?
- Labour cost based metrics:

(i) translating reported time frequencies into exact hour equivalents;(ii) Double counting with other assets if a person is not only in training.

• One cross section (for the moment).

The way forward: your input

- How to improve this methodology?
 - Other similar studies ?
 - r we neglected yees' time official offi - Country-specific data information we neglected?
 - Double counting of employees' time

The way forward: your input

- How to improve this methodology?
 - Other similar studies ?
 - Country-specific data information we neglected?
 - Double counting of employees' time
- Extensions:
 - Correlations with other industry-level outcomes (e.g. productivity)
 - Complementarity OC and training?
 - Capitalization.
 - Time series : issue of cyclicality of training.
 - Depreciation (separation rate?) and decay, deflation.

